Molecular and Cellular Biochemistry

, Volume 347, Issue 1–2, pp 201–208 | Cite as

Functional polymorphisms of cyclooxygenase-2 gene and risk for hepatocellular carcinoma

  • Hikmet Akkız
  • Süleyman Bayram
  • Aynur Bekar
  • Ersin Akgöllü
  • Yakup Ülger


Cyclooxygenase-2 (COX-2) influences carcinogenesis through immune response suppression, apoptosis inhibition, regulation of angiogenesis and tumor cell invasion, and metastasis. It is now well established that COX-2 is overexpressed in many premalignant, malignant, and metastatic cancers, including hepatocellular carcinoma (HCC). DNA sequence variations in the COX-2 gene may lead to altered COX-2 production and/or activity, and so they cause inter-individual differences in the susceptibility to HCC. Functional coding region polymorphisms −1195A>G (rs689466), −765G>C (rs20417), and +8473T>C (rs5275) in the COX-2 gene have recently been shown to be associated with several human cancers but their association with HCC has yet to be investigated. We used hospital-based case–control study to assess the hypothesis that the functional COX-2 variation may affect individual susceptibility to the HCC. COX-2 polymorphisms were investigated in 129 confirmed subjects with HCC and 129 cancer-free control subjects matched on age, gender, smoking, and alcohol consumption using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The distribution of the COX-2 −1195A>G and +8473T>C genotypes were not significantly different between HCC cases and control. However, proportion of the COX-2 −765CC genotype which leads to a 30% reduction of the COX-2 promoter activity was significantly lower in patients with HCC (3.1%) when compared to control subjects (11.6%) (P < 0.05). Logistic regression analyses revealed that the COX-2 −765G>C variant genotype (−765CC) was associated with a significantly decreased risk of HCC compared with the −765GG wild-type homozygotes [P < 0.05, odds ratio (OR) = 0.25, 95% confidence interval (CI) = 0.08–0.79]. Our results suggest for the first time that the −765CC genotype of COX-2 −765G>C polymorphism, causing lower COX-2 gen expression, is a genetic protective factor for HCC. However, because this is the first report concerning the COX-2 −1195A>G, −765G>C, and +8473T>C polymorphisms and the risk of HCC, independent studies are needed to validate our findings.


Hepatocellular carcinoma COX-2 −1195 A>G (rs689466) polymorphism COX-2 −765G>C (rs20417) polymorphism COX-2 +8473T>C (rs5275) polymorphism Case–control study Genetic susceptibility 



This study was funded by Çukurova University Research Fund FEF2008D4. The authors thank to all subjects who participated in this study.


  1. 1.
    De Witt DL (1991) Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta 1083:121–134. doi: 10.1016/0005-2760(91)90032-D Google Scholar
  2. 2.
    Chandrasekharan NV, Simmons DL (2004) The cyclooxygenases. Genom Biol 5:241. doi: 10.1186/gb-2004-5-9-241 CrossRefGoogle Scholar
  3. 3.
    Warner TD, Mitchell JA (2002) Cyclooxygenase-3 (COX-3): filling in the gaps toward a COX continuum? Proc Natl Acad Sci USA 99:13371–13373. doi: 10.1073/pnas.222543099 CrossRefPubMedGoogle Scholar
  4. 4.
    Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916CrossRefPubMedGoogle Scholar
  5. 5.
    Trifan OC, Hla T (2003) Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med 7:207–222. doi: 10.1111/j.1582-4934.2003.tb00222.x CrossRefPubMedGoogle Scholar
  6. 6.
    Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) Cox-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637–2645. doi: 10.1002/1097-0142(20001215) CrossRefPubMedGoogle Scholar
  7. 7.
    Koki AT, Masferrer JL (2002) Celecoxib: a specific COX-2 inhibitor with anticancer properties. Cancer Control 9:28–35PubMedGoogle Scholar
  8. 8.
    Gasparini G, Longo R, Sarmiento R, Morabito A (2003) Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol 4:605–615. doi: 10.1016/S1470-2045(03)01220-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Wu T (2006) Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev 32:28–44. doi: 10.1016/j.ctrv.2005.10.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Tazawa R, Xu XM, Wu KK, Wang LH (1994) Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun 203:190–199. doi: 10.1006/bbrc.1994.2167 CrossRefPubMedGoogle Scholar
  11. 11.
    Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T (1994) Structure of the human cyclo-oxygenase-2 gene. Biochem J 302:723–727PubMedGoogle Scholar
  12. 12.
    Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, Laurent GJ (2002) Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 22:1631–1636. doi: 10.1161/01.ATV.0000030340.80207.C5 CrossRefPubMedGoogle Scholar
  13. 13.
    Szczeklik W, Sanak M, Szczeklik A (2004) Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol 114:248–253. doi: 10.1016/j.jaci.2004.05.030 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang X, Miao X, Tan W, Ning B, Liu Z, Hong Y, Song W, Guo Y, Zhang X, Shen Y, Qiang B, Kadlubar FF, Lin D (2005) Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 129:565–576. doi: 10.1053/j.gastro.2005.05.003 PubMedGoogle Scholar
  15. 15.
    Ramsay RG, Friend A, Vizantios Y, Freeman R, Sicurella C, Hammett F, Armes J, Venter D (2000) Cyclooxygenase-2, a colorectal cancer nonsteroidal anti-inflammatory drug target, is regulated by c-MYB. Cancer Res 60:1805–1809PubMedGoogle Scholar
  16. 16.
    Cok SJ, Morrison AR (2001) The 3’-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 276:23179–23185. doi: 10.1074/jbc.M008461200 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu W, Wei BB, Shan X, Liu P (2009) 765G>C and 8473T>C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case–control studies. Mol Biol Rep 37(1):277–288. doi: 10.1007/s11033-009-9685-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E, Pagliaro L, Colombo M, Rodés J (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35:421–430CrossRefPubMedGoogle Scholar
  19. 19.
    Tsai JF, Chang WY, Jeng JE, Ho MS, Lin ZY, Tsai JH (1994) Hepatitis B and C virus infection as risk factors for liver cirrhosis and cirrhotic hepatocellular carcinoma: a case-control study. Liver 14:98–102PubMedGoogle Scholar
  20. 20.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the esophagus for bleeding esophageal varices. Br J Surg 60:646–649CrossRefPubMedGoogle Scholar
  21. 21.
    Gao J, Ke Q, Ma HX, Wang Y, Zhou Y, Hu ZB, Zhai XJ, Wang XC, Qing JW, Chen WS, Jin GF, Liu JY, Tan YF, Wang XR, Shen HB (2007) Functional polymorphisms in the cyclooxygenase 2 (COX-2) gene and risk of breast cancer in a Chinese population. J Toxicol Environ Health A 70:908–915. doi: 10.1080/15287390701289966 CrossRefPubMedGoogle Scholar
  22. 22.
    Akkiz H, Bayram S, Bekar A, Ozdil B, Akgöllü E, Sümbül AT, Demiryürek H, Doran F (2009) G-308A TNF-alpha polymorphism is associated with an increased risk of hepatocellular carcinoma in the Turkish population: case–control study. Cancer Epidemiol 33(3–4):261–264. doi: 10.1016/j.canep.2009.06.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Akkiz H, Bayram S, Bekar A, Akgöllü E, Ozdil B (2010) Relationship between functional polymorphism in the Aurora A gene and susceptibility of hepatocellular carcinoma. J Viral Hepat 17:668–674. doi: 10.1111/j.1365-2893.2009.01225.x PubMedGoogle Scholar
  24. 24.
    Chi-Man Tang T, Tung-Ping Poon R, Fan ST (2005) The significance of cyclooxygenase-2 expression in human hepatocellular carcinoma. Biomed Pharmacother 59:S311–S316. doi: 10.1016/S0753-3322(05)80053-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809. doi: 10.1016/S0092-8674(00)81988-1 CrossRefPubMedGoogle Scholar
  26. 26.
    Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61CrossRefPubMedGoogle Scholar
  27. 27.
    Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667. doi: 10.1016/0092-8674(86)90341-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83:1670–1674CrossRefPubMedGoogle Scholar
  29. 29.
    Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942. doi: 10.1093/bioinformatics/bti473 CrossRefPubMedGoogle Scholar
  30. 30.
    Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431CrossRefPubMedGoogle Scholar
  31. 31.
    Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B (2009) Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squamous cell carcinoma. Mutat Res 26(663):52–59. doi: 10.1016/j.mrfmmm.2009.01.007 Google Scholar
  32. 32.
    Srivastava K, Srivastava A, Pandey SN, Kumar A, Mittal B (2009) Functional polymorphisms of the cyclooxygenase (PTGS2) gene and risk for gallbladder cancer in a North Indian population. J Gastroenterol 44:774–780. doi: 10.1007/s00535-009-0071-5 CrossRefPubMedGoogle Scholar
  33. 33.
    Shi J, Misso NL, Kedda MA, Horn J, Welch MD, Duffy DL, Williams C, Thompson PJ (2008) Cyclooxygenase-2 gene polymorphisms in an Australian population: association of the −1195G>A promoter polymorphism with mild asthma. Clin Exp Allergy 38:913–920. doi: 10.1111/j.1365-2222.2008.02986.x CrossRefPubMedGoogle Scholar
  34. 34.
    Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122. doi: 10.1136/gut.2004.047100 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Hikmet Akkız
    • 1
  • Süleyman Bayram
    • 1
    • 2
  • Aynur Bekar
    • 1
  • Ersin Akgöllü
    • 1
  • Yakup Ülger
    • 1
  1. 1.Department of Gastroenterology, Faculty of MedicineÇukurova UniversityAdanaTurkey
  2. 2.Department of Nursing, Adιyaman School of HealthAdιyaman UniversityAdιyamanTurkey

Personalised recommendations