Skip to main content
Log in

Early postnatal development of rat brain is accompanied by generation of lipofuscin-like pigments

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The increased generation of free radicals results in the formation of fluorescent end-products of lipid peroxidation, lipofuscin-like pigments (LFPs). The authors observed that LFPs are generated in rat brain after a normal birth during 5 postnatal days. The experimental design of the study comprised 10 groups of animals. The authors measured prenatal values 1 day and 7 days before birth, and then the animals were sampled on postnatal day 1, 2, 5, 10, 15, 25, 35, and 90. Maximum LFP concentration is achieved on the postnatal day 2. Starting from postnatal day 10, LFP concentration returns to prenatal values. A new rise in LFP concentration is observed at 3 months of age. This is associated with the beginning of the aging process. LFPs were characterized by fluorescence spectroscopy using tridimensional excitation spectra, synchronous spectra and their derivatives, and HPLC with fluorescence detection. It was possible to discern several tens of fluorescent compounds of unknown structure that are generated and metabolized during early development. The authors suggest that LFPs are formed after respiratory burst of microglia phagocytosing apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  2. Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5:557–561

    Article  CAS  PubMed  Google Scholar 

  3. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  4. Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    CAS  PubMed  Google Scholar 

  5. Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

    Article  CAS  PubMed  Google Scholar 

  6. Jamieson DD (1991) Lipid peroxidation in brain and lungs from mice exposed to hyperoxia. Biochem Pharmacol 41:749–756

    Article  CAS  PubMed  Google Scholar 

  7. Svoboda P, Lodin Z (1972) Postnatal development of some mitochondrial enzyme activities of cortical neurons and glial cells. Physiol Bohemoslov 21:457–465

    CAS  PubMed  Google Scholar 

  8. Svoboda P, Lodin Z (1973) Ontogenic development of oxidative capacity of the brain. Physiol Bohemoslov 23:434

    Google Scholar 

  9. Kuan CY, Roth KA, Flavell RA et al (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297

    Article  CAS  PubMed  Google Scholar 

  10. Marín-Teva JL, Dusart I, Collin C et al (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547

    Article  PubMed  Google Scholar 

  11. Witz G, Lawrie NJ, Zaccaria A et al (1986) The reaction of 2-thiobarbituric acid with biologically active alpha, beta-unsaturated aldehydes. Free Radic Biol Med 2:33–39

    CAS  Google Scholar 

  12. Weber GF (1990) The measurement of oxygen-derived free radicals and related substances in medicine. J Clin Chem Clin Biochem 28:569–603

    CAS  PubMed  Google Scholar 

  13. Chio KS, Reiss V, Fletcher B et al (1969) Peroxidation of subcellular organelles: formation of lipofuscin-like pigments. Science 166:1535–1536

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong D, Wilhelm J, Smid F et al (1992) Chromatography and spectrofluorometry of brain fluorophores in neuronal ceroid lipofuscinosis (NCL). Mech Ageing Dev 64:293–302

    Article  CAS  PubMed  Google Scholar 

  15. Wihlmark U, Wrigstad A, Roberg K et al (1996) Lipofuscin formation in cultured retinal pigment epithelial cells exposed to photoreceptor outer segment material under different oxygen concentrations. APMIS 104:265–271

    Article  CAS  PubMed  Google Scholar 

  16. Wilhelm J, Herget J (1999) Hypoxia induces free radical damage to rat erythrocytes and spleen: analysis of the fluorescent end-products of lipid peroxidation. Int J Biochem Cell Biol 31:671–681

    Article  CAS  PubMed  Google Scholar 

  17. Bonnefont-Rousselot D, Gardes-Albert M, Lepage S et al (1992) Effect of pH on low-density lipoprotein oxidation by O2 /HO2 free radicals produced by gamma radiolysis. Radiat Res 132:228–236

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm J, Brzak P, Rejholcova M (1989) Changes in lipofuscin-like pigments in erythrocytes and spleen after whole-body gamma irradiation of rats. Radiat Res 120:227–233

    Article  CAS  PubMed  Google Scholar 

  19. Wilhelm J, Sonka J (1981) Time-course of changes in lipofuscin-like pigments in rat liver homogenate and mitochondria after whole body gamma irradiation. Experientia 37:573–574

    Article  CAS  PubMed  Google Scholar 

  20. Shimasaki H, Maeba R, Tachibana R et al (1995) Lipid peroxidation and ceroid accumulation in macrophage cultured with oxidized low density lipoprotein. Gerontology 41(Suppl 2):39–48

    Article  CAS  PubMed  Google Scholar 

  21. Vasankari T, Kujala U, Heinonen O et al (1995) Measurement of serum lipid peroxidation during exercise using three different methods: diene conjugation, thiobarbituric acid reactive material and fluorescent chromolipids. Clin Chim Acta 234:63–69

    Article  CAS  PubMed  Google Scholar 

  22. Goldstein BD, McDonagh EM (1976) Spectrofluorescent detection of in vivo red cell lipid peroxidation in patients treated with diaminodiphenylsulfone. J Clin Investig 57:1302–1307

    Article  CAS  PubMed  Google Scholar 

  23. Randerath E, Zhou G-D, Randerath K (1997) Organ-specific oxidative DNA damage associated with normal birth in rats. Carcinogenesis 18:859–866

    Article  CAS  PubMed  Google Scholar 

  24. Sastre J, Asensi M, Rodrigo F et al (1994) Antioxidant administration to the mother prevents oxidative stress associated with birth in the neonatal rat. Life Sci 54:2055–2059

    Article  CAS  PubMed  Google Scholar 

  25. Pellardo FV, Sastre J, Asensi M et al (1991) Physiological changes in glutathione metabolism in fetal and newborn liver. Biochem J 274:891–893

    Google Scholar 

  26. Gunther T, Hollriegl V, Vormann J (1993) Perinatal development of iron and antioxidant defense systems. J Trace Elem Electrolytes Health Dis 7:47–52

    CAS  PubMed  Google Scholar 

  27. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant Agency of AS CR (IAA500110606), The Centre of Neurosciences (project of Ministry of Education of the Czech Republic LC 554), and by the Academy of Sciences of the Czech Republic (AV0Z50110509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, J., Ivica, J., Kagan, D. et al. Early postnatal development of rat brain is accompanied by generation of lipofuscin-like pigments. Mol Cell Biochem 347, 157–162 (2011). https://doi.org/10.1007/s11010-010-0623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0623-2

Keywords

Navigation