Molecular and Cellular Biochemistry

, Volume 347, Issue 1–2, pp 63–70 | Cite as

Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats

  • Lamia Raaf
  • Christophe Noll
  • Mohamed El Hadi Cherifi
  • Jane-Lise Samuel
  • Claude Delcayre
  • Jean-Maurice Delabar
  • Yasmina Benazzoug
  • Nathalie Janel


Hyperhomocysteinemia, characterized by an elevated plasma homocysteine concentration, leads to several clinical manifestations and particularly cardiovascular diseases. Experimental models of hyperhomocysteinemia revealed several tissue injuries including heart fibrosis and ventricular hypertrophy. In order to analyze the molecular mechanisms link to these morphological alterations, a mild hyperhomocysteinemia was induced in rats via a chronic methionine administration. Effects of methionine administration were examined by histological analysis with Sirius red staining, histomorphometric analysis, zymography, and immunoblotting. Hyperhomocysteinemia due to methionine administration produces an interstitial myocardial fibrosis and a ventricular cardiomyocyte hypertrophy, which were associated with increased expression of transforming growth factor-beta1 (TGFβ1), tissue inhibitors of metalloproteinase (TIMP) 2, and JNK activation. However, the matrix metalloproteinase 2 activity was decreased in the hearts of hyperhomocysteinemic rats. Moreover, the TIMP1 protein expression was decreased, and the TIMP1–MMP1 balance was shifted. Remodeling in cardiac tissue observed in rat model of mild hyperhomocysteinemia is associated with a dysregulation in extracellular matrix degradation which results, at least in part, from enhancement of TGFβ1 level.


Homocysteine Heart Ventricular cardiomyocyte hypertrophy Fibrosis MMP/TIMP TGFβ1 



This study was supported in part by an EU grant AnEUploïdie. Lamia Raaf is supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique. Christophe Noll is supported by a fellowship from the Ministère de l’Enseignement supérieur et de la Recherche. We acknowledge the support from the technical platform “Quantitative microscopy with unbiased stereology” (Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot-Paris 7, CNRS EAC 4413).


  1. 1.
    Chen J, Zhang I, Cheng L, Li Y (2001) The effect of polymorphisms of MTHFR gene and vitamin B on hyperhomocysteinemia. J Tongji Med Univ 21:17–20CrossRefPubMedGoogle Scholar
  2. 2.
    Tur MD, De Maistre E, Franck P, Rolland MO, Fremont S, Lecompte T, Vidaihet M (2004) Delayed diagnosis of homocystinuria by major deficiency in cystathionine beta synthase. Rev Med Int 25:150–153CrossRefGoogle Scholar
  3. 3.
    Wilcken DE, Wilcken BB (1998) Vitamins and homocysteine in cardiovascular disease and aging. Ann NY Acad Sci 854:361–370CrossRefPubMedGoogle Scholar
  4. 4.
    Racek J, Rusnáková H, Trefil L, Siala KK (2005) The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiol Res 54:87–95PubMedGoogle Scholar
  5. 5.
    Chan SJ, Chang CN, Hsu JC, Lee YS, Shen CH (2002) Homocysteine, vitamin B6, and lipid in cardiovascular disease. Nutrition 18:595–598CrossRefPubMedGoogle Scholar
  6. 6.
    Marcucci R, Betti I, Cecchi E, Poli D, Giusti B, Fedi S, Lapini I, Abbate R, Gensini GF, Prisco D (2004) Hyperhomocysteinemia and vitamin B6 deficiency: new risk markers for nonvalvular atrial fibrillation? Am Heart J 148:456–461CrossRefPubMedGoogle Scholar
  7. 7.
    Bagi Z, Ungvari Z, Szollár L, Koller A (2001) Flow-induced constriction in arterioles of hyperhomocysteinemic rats is due to impaired nitric oxide and enhanced thromboxane A(2) mediation. Arterioscler Thromb Vasc Biol 21:233–237PubMedGoogle Scholar
  8. 8.
    Miller A, Mujumdar V, Shek E, Guillot J, Angelo M, Palmer L, Tyagi SC (2000) Hyperhomocyst(e)inemia induces multiorgan damage. Heart Vessels 15:135–143CrossRefPubMedGoogle Scholar
  9. 9.
    Devi S, Kennedy RH, Joseph L, Shekhawat NS, Melchert RB, Joseph J (2006) Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc Pathol 15:75–82CrossRefPubMedGoogle Scholar
  10. 10.
    Kundu S, Kumar M, Sen U, Mishra PK, Tyagi N, Metreveli N, Lominadze D, Rodriguez W, Tyagi SC (2009) Nitrotyrosinylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. J Cell Biochem 106:119–126CrossRefPubMedGoogle Scholar
  11. 11.
    Joseph J, Joseph L, Devi S, Kennedy RH (2008) Effect of anti-oxidant treatment on hyperhomocysteinemia-induced myocardial fibrosis and diastolic dysfunction. J Heart Lung Transplant 27:1237–1241CrossRefPubMedGoogle Scholar
  12. 12.
    Li H, Simon H, Bocan TM, Peterson JT (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306CrossRefPubMedGoogle Scholar
  13. 13.
    Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371PubMedGoogle Scholar
  14. 14.
    Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Böhm M, Pauschinger M, Schultheiss HP, Tschöpe C (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327CrossRefPubMedGoogle Scholar
  15. 15.
    Bescond A, Augier T, Chareyre C, Garçon D, Hornebeck W, Charpiot P (1999) Influence of homocysteine on matrix metalloproteinase-2: activation and activity. Biochem Biophys Res Commun 263:498–503CrossRefPubMedGoogle Scholar
  16. 16.
    Shastry S, Tyagi SC (2004) Homocysteine induces metalloproteinase and shedding of beta-1 integrin in microvessel endothelial cells. J Cell Biochem 93:207–213CrossRefPubMedGoogle Scholar
  17. 17.
    Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320CrossRefPubMedGoogle Scholar
  18. 18.
    Seeland U, Haeuseler C, Hinrichs R, Rosenkranz S, Pfitzner T, Scharffetter-Kochanek K, Böhm M (2002) Myocardial fibrosis in transforming growth factor-beta(1) (TGF-beta(1)) transgenic mice is associated with inhibition of interstitial collagenase. Eur J Clin Invest 32:295–303CrossRefPubMedGoogle Scholar
  19. 19.
    Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195CrossRefPubMedGoogle Scholar
  20. 20.
    Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W, Stern DM, Schmidt AM (2001) Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107:675–683CrossRefPubMedGoogle Scholar
  21. 21.
    Zulli A, Hare DL, Buxton BF, Black MJ (2006) The combination of high dietary methionine plus cholesterol induces myocardial fibrosis in rabbits. Atherosclerosis 185:278–281CrossRefPubMedGoogle Scholar
  22. 22.
    Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897CrossRefPubMedGoogle Scholar
  23. 23.
    Joseph J, Joseph L, Shekhawat NS, Devi S, Wang J, Melchert RB, Hauer-Jensen M, Kennedy RH (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–H686PubMedGoogle Scholar
  24. 24.
    Robert K, Nehmé J, Bourdon E, Pivert G, Friguet B, Delcayre C, Delabar JM, Janel N (2005) Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128:1405–1415CrossRefPubMedGoogle Scholar
  25. 25.
    Hamelet J, Maurin N, Fulchiron R, Delabar JM, Janel N (2007) Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement. Exp Mol Pathol 83:249–253CrossRefPubMedGoogle Scholar
  26. 26.
    Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, Dos Santos MF, Wyse AT (2009) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27:337–344CrossRefPubMedGoogle Scholar
  27. 27.
    Yi F, Xia M, Li N, Zhang C, Tang L, Li PL (2009) Contribution of guanine nucleotide exchange factor Vav2 to hyperhomocysteinemic glomerulosclerosis in rats. Hypertension 53:90–96CrossRefPubMedGoogle Scholar
  28. 28.
    Dai J, Li W, Chang L, Zhang Z, Tang C, Wang N, Zhu Y, Wang X (2006) Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis. Free Radic Biol Med 41:1566–1577CrossRefPubMedGoogle Scholar
  29. 29.
    Park HK, Park SJ, Kim CS, Paek YW, Lee JU, Lee WJ (2001) Enhanced gene expression of renin-angiotensin system, TGF-beta1, endothelin-1 and nitric oxide synthase in right-ventricular hypertrophy. Pharmacol Res 43:265–273CrossRefPubMedGoogle Scholar
  30. 30.
    Majors A, Ehrhart LA, Pezacka EH (1997) Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol 17:2074–2081PubMedGoogle Scholar
  31. 31.
    García-Tevijano ER, Berasain C, Rodríguez JA, Corrales FJ, Arias R, Martín-Duce A, Caballería J, Mato JM, Avila MA (2001) Hyperhomocysteinemia in liver cirrhosis: mechanisms and role in vascular and hepatic fibrosis. Hypertension 38:1217–1221CrossRefPubMedGoogle Scholar
  32. 32.
    Zou CG, Gao SY, Zhao YS, Li SD, Cao XZ, Zhang Y, Zhang KQ (2009) Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells. J Mol Med 87:75–84CrossRefPubMedGoogle Scholar
  33. 33.
    Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103:60–68CrossRefPubMedGoogle Scholar
  34. 34.
    Zhai Y, Gao X, Wu Q, Peng L, Lin J, Zuo Z (2008) Fluvastatin decreases cardiac fibrosis possibly through regulation of TGF-beta(1)/Smad 7 expression in the spontaneously hypertensive rats. Eur J Pharmacol 587:196–203CrossRefPubMedGoogle Scholar
  35. 35.
    Stawowy P, Margeta C, Kallisch H, Seidah NG, Chrétien M, Fleck E, Graf K (2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res 63:87–97CrossRefPubMedGoogle Scholar
  36. 36.
    Solini A, Santini E, Nannipieri M, Ferrannini E (2006) High glucose and homocysteine synergistically affect the metalloproteinases-tissue inhibitors of metalloproteinases pattern, but not TGFB expression, in human fibroblasts. Diabetologia 49:2499–2506CrossRefPubMedGoogle Scholar
  37. 37.
    Doronzo G, Russo I, Mattiello L, Trovati M, Anfossi G (2005) Homocysteine rapidly increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. Role of phosphatidyl inositol 3-kinase and mitogen activated protein kinase pathways. Thromb Haemost 6:1285–1293Google Scholar
  38. 38.
    Ovechkin AV, Tyagi N, Sen U, Lominadze D, Steed MM, Moshal KS, Tyagi SC (2006) 3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. Am J Physiol Lung Cell Mol Physiol 5:L905–L9011CrossRefGoogle Scholar
  39. 39.
    Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d’Ortho MP, Murphy G (1998) The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 273:871–880CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Lamia Raaf
    • 1
    • 2
  • Christophe Noll
    • 1
  • Mohamed El Hadi Cherifi
    • 3
  • Jane-Lise Samuel
    • 4
  • Claude Delcayre
    • 4
  • Jean-Maurice Delabar
    • 1
  • Yasmina Benazzoug
    • 2
  • Nathalie Janel
    • 1
  1. 1.Univ Paris Diderot-CNRS EAC 4413, unité de Biologie Fonctionnelle et Adaptative (BFA)Paris cedex 13France
  2. 2.Laboratoire de Biochimie et remodelage de la matrice extracellulaireAlgerAlgeria
  3. 3.Laboratoire de BiochimieHôpital ParnetAlgerAlgeria
  4. 4.INSERM U942-Univ Paris Diderot, Hôpital LariboisièreParisFrance

Personalised recommendations