Molecular and Cellular Biochemistry

, Volume 346, Issue 1–2, pp 1–10 | Cite as

Cloning and characterization of the NPCEDRG gene promoter

  • Defu Hou
  • Yongjun Guan
  • Jianping Liu
  • Zhefeng Xiao
  • Yongmei Ouyang
  • Yanhui Yu
  • Zhuchu Chen


NPCEDRG is a novel tumor suppressive gene that localizes to 3p21.3, a chromosomal region frequently associated with loss of heterozygosity (LOH) in a number of malignancies including nasopharyngeal carcinoma (NPC). Its transcriptional down-expression has been shown in the cell lines and primary tumor tissues of NPC. Reintroduction of NPCEDRG into CNE2, a cell line derived from NPC, was effective to induce cell differentiation, control cell growth, and regulate the cell cycle. Little is known about the transcriptional mechanisms controlling NPCEDRG gene expression. In this article, we describe the NPCEDRG gene structure and the transcriptional expression of NPCEDRG; we found that NPCEDRG was expressed weakly in most of NPC cell lines. Using 5′ rapid amplification of complementary DNA ends (5′-RACEs), we found that the NPCEDRG gene has several transcription start sites (TSSs) due to the existence of alternatively spliced variants, and the specific TSS of NPCEDRG was located −25 nucleotides upstream of the translation start site. We amend that Human NPCEDRG CDS containing 516 bp but not the 510 bp reported previously. To characterize the NPCEDRG promoter, transient luciferase and/or EGFP reporter assay were carried out with the constructs including various lengths of the 5′ flanking region of the NPCEDRG gene. The results demonstrated that the basal promoter is located at the region from −215 to −8 nucleotides, and the optimal promoter is located at the region from −625 to −8 nucleotides upstream of the translation start site. In silico analysis suggested that the promoter region contained potential binding sites for SP1, c-Myb, AREB6, Nkx2-5, and so on. These results provide important clues to elucidate the regulation of NPCEDRG gene expression and function. Further studies are apparently required for the identification of the transcription factors, essential for NPCEDRG expression, which would lead to better understanding of the molecular mechanism of NPCEDRG expression in nasopharyngeal epithelial cells.


NPC NPCEDRG Transcription Promoter 



This work was supported in part by Grants 30772401 and B2007006 from National Natural Science Foundation of China and Scientific Research Fund of Hunan Provincial Health Department.


  1. 1.
    Hildesheim A, West S, De Veyra E, De Guzman MF, Jurado A, Jones C, Imai J, Hinuma Y (1992) Herbal medicine use, Epstein-Barr virus, and risk of nasopharyngeal carcinoma. Cancer Res 52:3048–3051PubMedGoogle Scholar
  2. 2.
    Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ, Yang CS (2001) Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345:1877–1882CrossRefPubMedGoogle Scholar
  3. 3.
    Yu MC, Garabrant DH, Huang TB, Henderson BE (1990) Occupational and other non-dietary risk factors for nasopharyngeal carcinoma in Guangzhou, China. Int J Cancer 45:1033–1039CrossRefPubMedGoogle Scholar
  4. 4.
    Lu SJ, Day NE, Degos L et al (1990) Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 346:470–471CrossRefPubMedGoogle Scholar
  5. 5.
    Hou DF, Wang SL, He ZM, Yang F, Chen ZC (2007) Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro. Mol Cell Biochem 298:93–100CrossRefPubMedGoogle Scholar
  6. 6.
    Shih-Hsin Wu L (2006) Construction of evolutionary tree models for nasopharyngeal carcinoma using comparative genomic hybridization data. Cancer Genet Cytogenet 168:105–108CrossRefPubMedGoogle Scholar
  7. 7.
    Zeng ZY, Zhou Y, Zhang W, Li X, Xiong W, Liu H, Fan S, Qian J, Wang L, Li Z, Shen S, Li G (2006) Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med 8:156–160CrossRefPubMedGoogle Scholar
  8. 8.
    He XS, Chen ZC, Tian F, Xiao ZQ, He ZM, Guan YJ, Li F, He CM, Yuan JH (2003) Identification of down-regulated expressed sequence tag at chromosome 3p21 in nasopharyngeal carcinoma. Aizheng 22(1):1–5PubMedGoogle Scholar
  9. 9.
    Guan YJ, He XS, Hou DF, Yu YH, Ouyang YM, Xiao ZQ, Chen ZC (2006) Identification of a nasopharyngeal carcinoma-related EST and sequence analysis of its full-length cDNA. Life Sci Res 10(2):173–177Google Scholar
  10. 10.
    Xiong W, Zeng ZY, Xia JH et al (2004) A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64:1972–1974CrossRefPubMedGoogle Scholar
  11. 11.
    Chow LS, Lam CW, Chan SY, Tsao SW, To KF, Tong SF, Hung WK, Dammann R, Huang DP, Lo KW (2006) Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 25(2):310–316PubMedGoogle Scholar
  12. 12.
    Cheng Y, Poulos NE, Lung ML, Hampton G, Ou B, Lerman MI, Stanbridge EJ (1998) Functional evidence for a nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3. Proc Natl Acad Sci USA 95:3042–3047CrossRefPubMedGoogle Scholar
  13. 13.
    Yi HM, Li H, Peng D, Zhang HJ, Wang L, Zhao M, Yao KT, Ren CP (2006) Genetic and epigenetic alterations of LTF at 3p21.3 in nasopharyngeal carcinoma. Oncol Res 16(6):261–272PubMedGoogle Scholar
  14. 14.
    Yau WL, Lung HL, Zabarovsky ER, Lerman MI, Sham JS, Chua DT, Tsao SW, Stanbridge EJ, Lung ML (2006) Functional studies of the chromosome 3p21.3 candidate tumor suppressor gene BLU/ZMYND10 in nasopharyngeal carcinoma. Int J Cancer 119:2821–2826CrossRefPubMedGoogle Scholar
  15. 15.
    Wei MH, Latif F, Bader S, Kashuba V, Chen JY, Duh FM, Sekido Y, Lee CC, Geil L, Kuzmin I, Zabarovsky E, Klein G, Zbar B, Minna JD, Lerman MI (1996) Construction of a 600-kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene (TSG) locus on human chromosome 3p21.3: progress toward the isolation of a lung cancer TSG. Cancer Res 56:1487–1492PubMedGoogle Scholar
  16. 16.
    Wistuba II, Montellano FD, Milchgrub S, Virmani AK, Behrens C, Chen H, Ahmadian M, Nowak JA, Muller C, Minna JD, Gazdar AF (1997) Deletions of chromosome 3p are frequent and early events in the pathogenesis of uterine cervical carcinoma. Cancer Res 57:3154–3158PubMedGoogle Scholar
  17. 17.
    Protopopov A, Kashuba V, Zabarovska VI, Muravenko OV, Lerman MI, Klein G, Zabarovsky ER (2003) An integrated physical and gene map of the 3.5-Mb chromosome 3p21.3 (AP20) region implicated in major human epithelial malignancies. Cancer Res 63:404–412PubMedGoogle Scholar
  18. 18.
    Sharp TV, Al-Attar A, Foxler DE, Ding L, de A Vallim TQ, Zhang Y, Nijmeh HS, Webb TM, Nicholson AG, Zhang Q, Kraja A, Spendlove I, Osborne J, Mardis E, Longmore GD (2008) The chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in human lung cancer development. Proc Natl Acad Sci USA 105:19932–19937CrossRefPubMedGoogle Scholar
  19. 19.
    Yang S, Hu H, Deng M, Dong JH, Wang Y, Luo Q, He XS, Chen ZC (2010) Effect of the novel gene NPCEDRG associated with NPC on the growth of CNE2 cells. Prog Biochem Biophys 37:167–174CrossRefGoogle Scholar
  20. 20.
    Backofen B, Jacob R, Serth K, Gossler A, Naim HY, Leeb T (2002) Cloning and characterization of the mammalian-specific nicolin 1 gene (NICN1) encoding a nuclear 24 kDa protein. Eur J Biochem 269:5240–5245CrossRefPubMedGoogle Scholar
  21. 21.
    Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open 599 Software Suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  22. 22.
    Bernardi G (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241:3–17CrossRefPubMedGoogle Scholar
  23. 23.
    Schug J (2008) Using TESS to predict transcription factor binding sites in DNA sequence. In: Baxevanis AD (ed) Current protocols in bioinformatics, Chap 2: unit 2.6. Wiley, PennsylvaniaGoogle Scholar
  24. 24.
    Werner T (2006) Computer-assisted analysis of transcription control regions. Matinspector and other programs. Methods Mol Biol 132:337–349Google Scholar
  25. 25.
    Fan J, Zhan M, Shen J, Martindale JL, Yang X, Kawai T, Gorospe M (2006) En masse nascent transcription analysis to elucidate regulatory transcription factors. Nucleic Acids Res 34:1492–1500CrossRefPubMedGoogle Scholar
  26. 26.
    Oswald F, Winkler M, Cao Y, Astrahantseff K, Bourteele S, Knöchel W, Borggrefe T (2005) RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol 25:10379–10390CrossRefPubMedGoogle Scholar
  27. 27.
    Lee SH, Wang X, DeJong J (2000) Functional interactions between an atypical NF-kappaB site from the rat CYP2B1 promoter and the transcriptional repressor RBP-Jkappa/CBF1. Nucleic Acids Res 28:2091–2098CrossRefPubMedGoogle Scholar
  28. 28.
    Bjornsdottir G, Myers LC (2008) Minimal components of the RNA polymerase II transcription apparatus determine the consensus TATA box. Nucleic Acids Res 36:2906–2916CrossRefPubMedGoogle Scholar
  29. 29.
    Hochheimer A, Tjian R (2003) Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 17:1309–1320CrossRefPubMedGoogle Scholar
  30. 30.
    Wolner BS, Gralla JD (2000) Roles for non-TATA core promoter sequences in transcription and factor binding. Mol Cell Biol 20:3608–3615CrossRefPubMedGoogle Scholar
  31. 31.
    Anish R, Hossain MB, Jacobson RH, Takada S (2009) Characterization of transcription from TATA-less promoters: identification of a new core promoter element XCPE2 and analysis of factor requirements. PLoS ONE 4:e5103CrossRefPubMedGoogle Scholar
  32. 32.
    Kwong J, Lo KW, Chow LS, To KF, Choy KW, Chan FL, Mok SC, Huang DP (2005) Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma. Neoplasia 7:67–74CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Defu Hou
    • 1
    • 2
  • Yongjun Guan
    • 2
  • Jianping Liu
    • 1
    • 2
  • Zhefeng Xiao
    • 1
    • 2
  • Yongmei Ouyang
    • 2
  • Yanhui Yu
    • 2
  • Zhuchu Chen
    • 1
    • 2
  1. 1.Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South UniversityChangshaChina
  2. 2.Cancer Research Institute, Xiangya School of MedicineCentral South UniversityChangshaChina

Personalised recommendations