Molecular and Cellular Biochemistry

, Volume 345, Issue 1–2, pp 23–27 | Cite as

Alterations in serum selenium levels and their relation to troponin I in acute myocardial infarction

  • Barbara Kutil
  • Petr Ostadal
  • Jiri Vejvoda
  • Jiri Kukacka
  • Jana Cepova
  • David Alan
  • Andreas Krüger
  • Dagmar Vondrakova


Selenium (Se) is an essential trace element with antioxidant function. The aim of the present study was to estimate the alterations of Se serum level during the acute phase of myocardial infarction and its relation to biomarkers of myocardial necrosis. Serum Se levels were measured at admission and after 24 h in 60 consecutive patients with acute coronary syndrome (both with and without ST elevation). Troponin I (TnI) was assessed at admission and then twice daily for 3 days; patients with normal levels were excluded. Fifty-five patients with acute MI (positive TnI) were included into the analysis. During the first day of hospitalization, patients received standard therapy, including acetylsalicylic acid, clopidogrel, and heparin or enoxaparin; all underwent urgent coronary angiography and percutaneous intervention, when appropriate. Mean Se levels at baseline and 24 h later were comparable (67.1 ± 2.1 vs. 67.2 ± 1.8 μg/L, ns). Linear regression has shown significant correlation between baseline Se levels and peak TnI (y = 3.4x − 116, r 2 = 0.13, P = 0.008). Positive correlation was found also between the peak TnI and the difference from baseline to 24 h (y = 2.2x + 115, r 2 = 0.08, P = 0.04). Moreover, close negative correlation was observed between baseline Se levels and the difference from baseline to 24 h (y = −0.9x + 62.7, r 2 = 0.55, P<0.001). Our results have shown marked individual changes in Se levels during the acute phase of MI as well as correlation between Se levels and peak TnI. These results suggest that alterations in serum Se may be related to the extent of myocardial infarction.


Selenium Acute coronary syndrome Myocardial infarction Troponin I 



This study was supported by the grant of the Czech Ministry of Health, Nr. 00000064203.


  1. 1.
    Navarro-Alarcon M, Lopez-Garcia de la Serrana H, Perez-Valero V, Lopez-Martinez C (1999) Serum and urine selenium concentrations in patients with cardiovascular diseases and relationship to other nutritional indexes. Ann Nutr Metab 43:30–36CrossRefPubMedGoogle Scholar
  2. 2.
    Flaherty JT, Zweier JL (1991) Role of oxygen radicals in myocardial reperfusion injury: experimental and clinical evidence. Klin Wochenschr 69:1061–1065CrossRefPubMedGoogle Scholar
  3. 3.
    Altekin E, Coker C, Sisman AR, Onvural B, Kuralay F, Kirimli O (2005) The relationship between trace elements and cardiac markers in acute coronary syndromes. J Trace Elem Med Biol 18:235–242CrossRefPubMedGoogle Scholar
  4. 4.
    Pucheu S, Coudray C, Tresallet N, Favier A, de Leiris J (1995) Effect of dietary antioxidant trace element supply on cardiac tolerance to ischemia-reperfusion in the rat. J Mol Cell Cardiol 27:2303–2314CrossRefPubMedGoogle Scholar
  5. 5.
    Toufektsian MC, Boucher F, Pucheu S, Tanguy S, Ribuot C, Sanou D, Tresallet N, de Leiris J (2000) Effects of selenium deficiency on the response of cardiac tissue to ischemia and reperfusion. Toxicology 148:125–132CrossRefPubMedGoogle Scholar
  6. 6.
    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673CrossRefPubMedGoogle Scholar
  7. 7.
    Barandier C, Tanguy S, Pucheu S, Boucher F, De Leiris J (1999) Effect of antioxidant trace elements on the response of cardiac tissue to oxidative stress. Ann N Y Acad Sci 874:138–155CrossRefPubMedGoogle Scholar
  8. 8.
    Yakobson GS, Antonov AR, Golovatyuk AV, Markel AL, Yakobson MG (2001) Selenium content and blood antioxidant activity in rats with hereditary arterial hypertension during experimental myocardial infarction. Bull Exp Biol Med 132:641–643CrossRefPubMedGoogle Scholar
  9. 9.
    Ostadalova I, Ostadal B (1992) Effect of isoproterenol on 85Sr accumulation in the myocardium of the rat during postnatal ontogeny. Physiol Res 41:471–473PubMedGoogle Scholar
  10. 10.
    Lafont A, Marwick TH, Chisolm GM, Van Lente F, Vaska KJ, Whitlow PL (1996) Decreased free radical scavengers with reperfusion after coronary angioplasty in patients with acute myocardial infarction. Am Heart J 131:219–223CrossRefPubMedGoogle Scholar
  11. 11.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456CrossRefPubMedGoogle Scholar
  12. 12.
    Nohl H, Breuninger V, Hegner D (1978) Influence of mitochondrial radical formation on energy-linked respiration. Eur J Biochem 90:385–390CrossRefPubMedGoogle Scholar
  13. 13.
    Dhalla NS, Temsah RM (2001) Sarcoplasmic reticulum and cardiac oxidative stress: an emerging target for heart disease. Expert Opin Ther Targets 5:205–217CrossRefPubMedGoogle Scholar
  14. 14.
    Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-kappaB due to ischemia-reperfusion injury. Antioxid Redox Signal 7:1388–1397CrossRefPubMedGoogle Scholar
  15. 15.
    Konz KH, Haap M, Walsh RA, Burk RF, Seipel L (1991) Selenium as a protector of diastolic function during oxidant stress. J Trace Elem Electrolytes Health Dis 5:87–93PubMedGoogle Scholar
  16. 16.
    Bor MV, Cevik C, Uslu I, Guneral F, Duzgun E (1999) Selenium levels and glutathione peroxidase activities in patients with acute myocardial infarction. Acta Cardiol 54:271–276PubMedGoogle Scholar
  17. 17.
    Kok FJ, Hofman A, Witteman JC, de Bruijn AM, Kruyssen DH, de Bruin M, Valkenburg HA (1989) Decreased selenium levels in acute myocardial infarction. JAMA 261:1161–1164CrossRefPubMedGoogle Scholar
  18. 18.
    Beaglehole R, Jackson R, Watkinson J, Scragg R, Yee RL (1990) Decreased blood selenium and risk of myocardial infarction. Int J Epidemiol 19:918–922CrossRefPubMedGoogle Scholar
  19. 19.
    Hassanzadeh M, Faridhosseini R, Mahini M, Faridhosseini F, Ranjbar A (2006) Serum levels of TNF-, IL-6, and selenium in patients with acute and chronic coronary artery disease. Iran J Immunol 3:142–145PubMedGoogle Scholar
  20. 20.
    Zachara BA, Ukleja-Adamowicz M, Nartowicz E, Lecka J (2001) Increased plasma glutathione peroxidase activity in patients with acute myocardial infarction. Med Sci Monit 7:415–420PubMedGoogle Scholar
  21. 21.
    Oster O, Prellwitz W (1990) Selenium and cardiovascular disease. Biol Trace Elem Res 24:91–103CrossRefPubMedGoogle Scholar
  22. 22.
    Korpela H, Kumpulainen J, Jussila E, Kemila S, Kaariainen M, Kaariainen T, Sotaniemi EA (1989) Effect of selenium supplementation after acute myocardial infarction. Res Commun Chem Pathol Pharmacol 65:249–252PubMedGoogle Scholar
  23. 23.
    Oster O, Drexler M, Schenk J, Meinertz T, Kasper W, Schuster CJ, Prellwitz W (1986) The serum selenium concentration of patients with acute myocardial infarction. Ann Clin Res 18:36–42PubMedGoogle Scholar
  24. 24.
    Salvini S, Hennekens CH, Morris JS, Willett WC, Stampfer MJ (1995) Plasma levels of the antioxidant selenium and risk of myocardial infarction among U.S. physicians. Am J Cardiol 76:1218–1221CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Barbara Kutil
    • 1
    • 2
  • Petr Ostadal
    • 3
  • Jiri Vejvoda
    • 4
  • Jiri Kukacka
    • 5
  • Jana Cepova
    • 5
  • David Alan
    • 4
  • Andreas Krüger
    • 1
  • Dagmar Vondrakova
    • 1
  1. 1.Department of Cardiology, Cardiovascular CenterNa Homolce HospitalPragueCzech Republic
  2. 2.Charite – UniversitätsmedizinBerlinGermany
  3. 3.Department of Cardiology, Cardiovascular CenterNa Homolce HospitalPragueCzech Republic
  4. 4.Department of Cardiology, Cardiovascular CenterUniversity Hospital MotolPragueCzech Republic
  5. 5.Department of Clinical Biochemistry and PathobiochemistryUniversity Hospital MotolPragueCzech Republic

Personalised recommendations