Advertisement

Molecular and Cellular Biochemistry

, Volume 344, Issue 1–2, pp 43–53 | Cite as

Amino acids influence the glucose uptake through GLUT4 in CHO-K1 cells under high glucose conditions

  • Radhakrishnan Selvi
  • Narayanasamy Angayarkanni
  • Begum Asma
  • Thiagarajan Seethalakshmi
  • Srinivasan Vidhya
Article

Abstract

According to studies earlier, amino acids have proven to be antidiabetic, antiglycating, and anticataractogenic. The present study was to explore whether amino acids as mixtures could enhance glucose uptake in CHO-K1 cells specifically. The cells in F-12K1 serum-free medium were exposed to normal (7 mM) and high glucose (12, 17 and 27 mM) in the presence and absence of amino acids mixture (AAM) in varying concentration (2.5, 5 and 10 mM). The mixture 5 and 10 mM AAM increased the 2-deoxyglucose (2DG) uptake at all glucose concentration significantly. There was also a significant increase in the GLUT4 (glucose transporter) translocation as revealed by flow cytometer. Addition of a mixture of amino acids was found to improve cell viability, which got altered by high glucose in the CHO-K1 cells. Amino acids as mixture had a beneficial effect in improving the net utilization of glucose as an additive effect with insulin.

Keywords

Amino acids Glucose uptake GLUT4 

Notes

Acknowledgments

This work was supported by a grant from the Department of Science and Technology (DST) (Grant SR/SO/BB-15/2005), Govt. of India, New Delhi. We thank Dr. S. Ramakrishnan, Prof. Emeritus & Dr. K. N. Sulochana, Director, Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, for their scientific support. The authors thank Dr. N. Rajagopal for his excellent technical assistance.

Conflicts of interest statement

All the authors state that they have no competing financial interests existing with respect to publication of this work.

References

  1. 1.
    Saltiel AR, Kahn CR (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414:799–806. doi: 10.1038/414799a CrossRefPubMedGoogle Scholar
  2. 2.
    Watson RT, Kanzaki M, Pessin JE (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25:177–204. doi: 10.1210/er.2003-0011 CrossRefPubMedGoogle Scholar
  3. 3.
    Kanzaki M (2006) Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J 53:267–293. doi: 10.1507/endocrj.KR-65 CrossRefPubMedGoogle Scholar
  4. 4.
    Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG, Meelheim D, Dohm GL (1987) Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 1330–1337. doi: 10.1172/JCI112958
  5. 5.
    Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL (1995) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95:2195–2204. doi: 10.1172/JCI117909 CrossRefPubMedGoogle Scholar
  6. 6.
    Zierath JR, Krook A, Wallberg-Henriksson H (1998) Insulin action in skeletal muscle from patients with NIDDM. Mol Cell Biochem 182:153–160CrossRefPubMedGoogle Scholar
  7. 7.
    Bjornholm M, Kawano Y, Lehtihet M, Zierath JR (1997) Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46:524–527. doi: 10.2337/diabetes.46.3.524 CrossRefPubMedGoogle Scholar
  8. 8.
    Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320. doi: 10.1172/JCI7535 CrossRefPubMedGoogle Scholar
  9. 9.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481. doi: 10.1172/JCI10842 CrossRefPubMedGoogle Scholar
  10. 10.
    Hissin PJ, Foley JE, Wardzala LJ, Karnieli E, Simpson IA, Salans LB, Cushman SW (1982) Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. J Clin Invest 70:780–90. doi: 10.1172/JCI110674 Google Scholar
  11. 11.
    Garvey WT, Huecksteadt TP, Birnbaum MJ (1989) Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 245:60–63. doi: 10.1126/science.2662408 CrossRefPubMedGoogle Scholar
  12. 12.
    Ramakrishnan S, Sulochana KN (1993) Decrease in glycation of lens proteins by lysine and glycine by scavenging of glucose and possible mitigation of cataractogenesis. Exp Eye Res 57:623–628. doi: 10.1006/exer.1993.1167 CrossRefPubMedGoogle Scholar
  13. 13.
    Ramakrishnan S, Sulochana KN, Punitham R, Arunagiri K (1996) Free alanine, aspartic acid, or glutamic acid reduce the glycation of human lens proteins. Glycoconj J 13:519–523. doi: 10.1007/BF00731438 CrossRefPubMedGoogle Scholar
  14. 14.
    Ramakrishnan S, Sulochana KN, Punitham R (1997) Free lysine, glycine, alanine, glutamic acid and aspartic acid reduce the glycation of human lens proteins by galactose. Indian J Biochem Biophys 34:518–523PubMedGoogle Scholar
  15. 15.
    Manders RJ, Wagenmakers AJ, Koopman R, Zorenc AH, Menheere PP, Schaper NC, Saris WH, van Loon LJ (2005) Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. Am J Clin Nutr 82:76–83PubMedGoogle Scholar
  16. 16.
    Van Loon LJ, Kruijshoop M, Menheere PP, Wagenmakers AJ, Saris WH, Keizer HA (2003) Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 26:625–630. doi: 10.2337/diacare.26.3.625 CrossRefPubMedGoogle Scholar
  17. 17.
    Sulochana KN, Punitham R, Ramakrishnan S (1998) Beneficial effect of lysine and amino acids on cataractogenesis in experimental diabetes through possible antiglycation of lens proteins. Exp Eye Res 67:597–601. doi: 10.1006/exer.1998.0547 CrossRefPubMedGoogle Scholar
  18. 18.
    Sulochana KN, Lakshmi S, Punitham R, Arokiasamy T, Sukumar B, Ramakrishnan S (2002) Effect of oral supplementation of free amino acids in type 2 diabetic patients—a pilot clinical trial. Med Sci Monit 8:CR131–CR137Google Scholar
  19. 19.
    Sulochana KN, Rajesh M, Ramakrishnan S (2001) Insulin receptor tyrosine kinase activity in monocytes of type 2 diabetes mellitus patients receiving oral l-lysine. Indian J Biochem Biophys 38:331–334PubMedGoogle Scholar
  20. 20.
    Sulochana KN, Indra C, Rajesh M, Srinivasan V, Ramakrishnan S (2001) Beneficial role of amino acids in mitigating cytoskeletal actin glycation and improving F-actin content: in vitro. Glycoconj J 18:277–282CrossRefPubMedGoogle Scholar
  21. 21.
    Srinivasan V, Rajesh M, Sulochana KN, Indra C, Ramakrishnan S (2005) Amino acids differentially regulate insulin receptor tyrosine kinase and phosphatidyl inositol-3-OH-kinase activities in human monocytes exposed to high glucose concentration. Indian J Biochem Biophys 42:13–18Google Scholar
  22. 22.
    McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18. doi: 10.2337/diabetes.51.1.7 CrossRefPubMedGoogle Scholar
  23. 23.
    Ohne Y, Toyoshima Y, Kato H (2005) Disruption of the availability of amino acids induces a rapid reduction of serine phosphorylation of insulin receptor substrate-1 in vivo and in vitro. Biosci Biotechnol Biochem 69:989–998. doi: 10.1271/bbb.69.989 CrossRefPubMedGoogle Scholar
  24. 24.
    McCarthy AM, Spisak KO, Brozinick JT, Elmendorf JS (2006) Loss of cortical actin filaments in insulin-resistant skeletal muscle cells impairs GLUT4 vesicle trafficking and glucose transport. Am J Physiol Cell Physiol 291:C860–C868. doi: 10.1152/ajpcell.00107.2006 CrossRefPubMedGoogle Scholar
  25. 25.
    Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elmendorf JS (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 20:857–870. doi: 10.1210/me.2005-0255 CrossRefPubMedGoogle Scholar
  26. 26.
    Doi M, Yamaoka I, Fukunaga T, Nakayama M (2003) Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochem Biophys Res Commun 312:1111–1117. doi: 10.1016/j.bbrc.2003.11.039 CrossRefPubMedGoogle Scholar
  27. 27.
    Doi M, Yamaoka I, Nakayama M, Mochizuki S, Sugahara K, Yoshizawa F (2005) Isoleucine, a blood glucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity. J Nutr 135:2103–2108PubMedGoogle Scholar
  28. 28.
    Nishitani S, Takehana K, Fujitani S, Sonaka I (2005) Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol 288:G1292–G1300. doi: 10.1152/ajpgi.00510.2003 CrossRefPubMedGoogle Scholar
  29. 29.
    Iwasaki H, Yada T (2007) Protein arginine methylation regulates insulin signaling in L6 skeletal muscle cells. Biochem Biophys Res Commun 364:1015–1021. doi: 10.1016/j.bbrc.2007.10.113 CrossRefPubMedGoogle Scholar
  30. 30.
    Wood JPM, Chidlow G, Graham M, Osborne NN (2004) Energy substrate requirements of rat retinal pigmented epethelial cells in culture: relative importance of glucose, amino acids, monocarboxylates. Invest Opthal Vis Sci 45:1272–1280. doi: 10.1167/iovs.03-0693 CrossRefGoogle Scholar
  31. 31.
    Henry C, Koumanov F, Ghezzi C, Morin C, Mathieu JP, Vidal M, de Leiris J, Comet M, Fagret D (1997) [123I]-6-deoxy-6-iodo-d-glucose (6DIG): a potential tracer of glucose transport. Nucl Med Biol 24:527–534. doi: 10.1016/S0969-8051(97)00037-1 CrossRefPubMedGoogle Scholar
  32. 32.
    Muretta JM, Romenskaia I, Mastick CC (2008) Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J Biol Chem 283:311–323. doi: 10.1074/jbc.M705756200 CrossRefPubMedGoogle Scholar
  33. 33.
    Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhausl W, Roden M (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51:599–605. doi: 10.2337/diabetes.51.3.599 CrossRefPubMedGoogle Scholar
  34. 34.
    Dixon G, Nolan J, McClenaghan N, Flatt PR, Newsholme P (2003) A comparative study of amino acid consumption by rat islet cells and the clonal beta-cell line BRIN-BD11—the functional significance of l-alanine. J Endocrinol 179:447–454. doi: 10.1677/joe.0.1790447 CrossRefPubMedGoogle Scholar
  35. 35.
    Hasegawa K, Anraku Y, Kasahara M, Akamatsu Y, Nishijima M (1990) Isolation and characterization of Chinese hamster ovary cell mutants defective in glucose transport. Biochim Biophys Acta 1051:221–229CrossRefPubMedGoogle Scholar
  36. 36.
    Demaegdt H, Smitz L, De Backer JP, Le MT, Bauwens M, Szemenyei E, Toth G, Michotte Y, Vanderheyden P, Vauquelin G (2008) Translocation of the insulin-regulated aminopeptidase to the cell surface: detection by radioligand binding. Br J Pharmacol 154:872–881. doi: 10.1038/bjp.2008.117 CrossRefPubMedGoogle Scholar
  37. 37.
    Bogan JS, McKee AE, Lodish HF (2001) Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 21:4785–4806. doi: 10.1128/MCB.21.14.4785-4806.2001 CrossRefPubMedGoogle Scholar
  38. 38.
    Wei ML, Bonzelius F, Scully RM, Kelly RB, Herman GA (1998) GLUT4 and transferrin receptor are differentially sorted along the endocytic pathway in CHO cells. J Cell Biol 140:565–575. doi: 10.1083/jcb.140.3.565 CrossRefPubMedGoogle Scholar
  39. 39.
    Haney PM, Slot JW, Piper RC, James DE, Mueckler M (1991) Intracellular targeting of the insulin-regulatable glucose transporter (GLUT4) is isoform specific and independent of cell type. J Cell Biol 114:689–699. doi: 10.1083/jcb.114.4.689 CrossRefPubMedGoogle Scholar
  40. 40.
    Verhey KJ, Hausdorff SF, Birnbaum MJ (1993) Identification of the carboxy terminus as important for the isoform-specific subcellular targeting of glucose transporter proteins. J Cell Biol 123:137–147. doi: 10.1083/jcb.123.1.137 CrossRefPubMedGoogle Scholar
  41. 41.
    Katome T, Obata T, Matsushima R, Masuyama N, Cantley LC, Gotoh Y, Kishi K, Shiota H, Ebina Y (2003) Use of RNA interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions. J Biol Chem 278:28312–28323. doi: 10.1074/jbc.M302094200 CrossRefPubMedGoogle Scholar
  42. 42.
    Ijuin T, Takenawa T (2003) SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol Cell Biol 23:1209–1220. doi: 10.1128/MCB.23.4.1209-1220.2003 CrossRefPubMedGoogle Scholar
  43. 43.
    Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117:277–286. doi: 10.1016/j.jbiotec.2005.02.003 CrossRefPubMedGoogle Scholar
  44. 44.
    Traxinger RR, Marshall S (1989) Role of amino acids in modulating glucose-induced desensitization of the glucose transport system. J Biol Chem 264:20910–20916PubMedGoogle Scholar
  45. 45.
    Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3:267–277. doi: 10.1038/nrm782 CrossRefPubMedGoogle Scholar
  46. 46.
    Martin OJ, Lee A, McGraw TE (2006) GLUT4 distribution between the plasma membrane and the intracellular compartments is maintained by an insulin-modulated bipartite dynamic mechanism. J Biol Chem 281:484–490. doi: 10.1074/jbc.M505944200 CrossRefPubMedGoogle Scholar
  47. 47.
    Coster AC, Govers R, James DE (2004) Insulin stimulates the entry of GLUT4 into the endosomal recycling pathway by a quantal mechanism. Traffic 5:763–771. doi: 10.1111/j.1600-0854.2004.00218.x CrossRefPubMedGoogle Scholar
  48. 48.
    Govers R, Coster AC, James DE (2004) Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol Cell Biol 24:6456–6466. doi: 10.1128/MCB.24.14.6456-6466.2004 CrossRefPubMedGoogle Scholar
  49. 49.
    Flati V, Pasini E, D’Antona G, Speca S, Toniato E, Martinotti S (2008) Intracellular mechanisms of metabolism regulation: the role of signaling via the mammalian target of rapamycin pathway and other routes. Am J Cardiol 101:16E–21E. doi: 10.1016/j.amjcard.2008.02.075 CrossRefPubMedGoogle Scholar
  50. 50.
    Garvey WT (1989) Insulin resistance and noninsulin-dependent diabetes mellitus: which horse is pulling the cart? Diabetes Metab Rev 5:727–742CrossRefPubMedGoogle Scholar
  51. 51.
    Ricci C, Jong CJ, Schaffer SW (2008) Proapoptoic and anti-apoptotic effects of hyperglycemia: role of insulin signaling. Can J Physiol Pharmacol 86:166–172CrossRefPubMedGoogle Scholar
  52. 52.
    Liu XJ, Yang C, Gupta N, Zuo J, Chang YS, Fang FD (2007) Protein kinase C-ζ regulation of GLUT4 translocation through actin remodeling in CHO cells. J Mol Med 85:851–861. doi: 10.1007/s00109-007-0232-z PubMedGoogle Scholar
  53. 53.
    Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney (2005) Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48:132–139. doi: 10.1007/s00125-004-1609-y CrossRefPubMedGoogle Scholar
  54. 54.
    Hou JC, Pessin JE (2007) The ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol 19:466–473. doi: 10.1016/j.ceb.2007.04.018 CrossRefPubMedGoogle Scholar
  55. 55.
    Kimball SR, Farrell PA, Jefferson LS (2002) Invited review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 93:1168–1180PubMedGoogle Scholar
  56. 56.
    Newsholme P, Brennan L, Rubi B, Maechler P (2005) New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci (Lond) 108:185–194CrossRefGoogle Scholar
  57. 57.
    MacDonald MJ, Kaysen JH, Moran SM, Pomije CE (1991) Pyruvate dehydrogenase and pyruvate carboxylase. Sites of pretranslational regulation by glucose of glucose-induced insulin release in pancreatic islets. J Biol Chem 266:22392–22397PubMedGoogle Scholar
  58. 58.
    Henquin JC, Meissner HP (1981) Effects of amino acids on membrane potential and 86 Rb+ fluxes in pancreatic beta-cells. Am J Physiol 240:E245–E252PubMedGoogle Scholar
  59. 59.
    Thams P, Capito K (1999) l-Arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur J Endocrinol 140:87–93. doi: 10.1530/eje.0.1400087 CrossRefPubMedGoogle Scholar
  60. 60.
    McClenaghan NH, Barnett CR, O’Harte FP, Flatt PR (1996) Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic B-cell line. J Endocrinol 151:349–357. doi: 10.1677/joe.0.1510349 CrossRefPubMedGoogle Scholar
  61. 61.
    Ralph DM, Robinson SR, Campbell MS, Bishop GM (2010) Histidine, cystine, glutamine and threonine collectively protect astrocytes from the toxicity of zinc. doi:  10.1016/j.freeradbiomed.2010.05.023

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Radhakrishnan Selvi
    • 1
  • Narayanasamy Angayarkanni
    • 1
  • Begum Asma
    • 1
  • Thiagarajan Seethalakshmi
    • 1
  • Srinivasan Vidhya
    • 1
  1. 1.Department of Biochemistry and Cell BiologySankara Nethralaya, Vision Research FoundationChennaiIndia

Personalised recommendations