Molecular and Cellular Biochemistry

, Volume 340, Issue 1–2, pp 283–289 | Cite as

Effects of metformin on glucose metabolism of perfused rat livers

  • Francielli Maria de Souza Silva
  • Mário Henrique Rocha Alves da Silva
  • Adelar Bracht
  • Gabrielle Jacklin Eller
  • Rodrigo Polimeni Constantin
  • Nair Seiko Yamamoto


Although metformin has been used to treat type 2 diabetes for several decades, the mechanism of its action on glucose metabolism remains controversial. To further assess the effect of metformin on glucose metabolism this work was undertaken to investigate the acute actions of metformin on glycogenolysis, glycolysis, gluconeogenesis, and ureogenesis in perfused rat livers. Metformin (5 mM) inhibited oxygen consumption and increased glycolysis and glycogenolysis in livers from fed rats. In perfused livers of fasted rats, the drug (concentrations higher than 1.0 mM) inhibited oxygen consumption and glucose production from lactate and pyruvate. Gluconeogenesis and ureogenesis from alanine were also inhibited. The cellular levels of ATP were decreased by metformin whereas the AMP levels of livers from fasted rats were increased. Taken together our results indicate that the energy status of the cell is probably compromised by metformin. The antihyperglycemic effect of metformin seems to be the result of a reduced oxidative phosphorylation without direct inhibition of key enzymatic activities of the gluconeogenic pathway. The AMP-activated protein kinase cascade could also be a probable target for metformin, which switches on catabolic pathways such as glycogenolysis and glycolysis, while switches off ATP consuming processes.


Diabetes Metformin Liver Gluconeogenesis Glycolysis Glycogenolysis 


  1. 1.
    Wollen N, Bailey CJ (1988) Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin. Biochem Pharmacol 37:4353–4358CrossRefPubMedGoogle Scholar
  2. 2.
    Hother-Nielsen O, Schmitz O, Andersen PH, Beck-Nielsen H, Pedersen O (1989) Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol 120(3):257–265. doi: 10.1530/acta.0.1200257 PubMedGoogle Scholar
  3. 3.
    Davis TME, Jackson D, Davis WA, Bruce DG, Chubb P (2001) The relationship between metformin therapy and the fasting plasma lactate in type 2 diabetes: The Fremantle Diabetes Study. Br J Clin Pharmacol 52(2):137–144. doi: 10.1046/j.0306-5251.2001.01423.x CrossRefPubMedGoogle Scholar
  4. 4.
    Argaud D, Roth H, Wiernsperger N, Leverve XM (1993) Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem 213(3):311–315. doi: 10.1111/j.1432-1033.1993.tb17886.x CrossRefGoogle Scholar
  5. 5.
    El-Mir M, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228. doi: 10.1074/jbc.275.1.223 CrossRefPubMedGoogle Scholar
  6. 6.
    Radziuk J, Zhang Z, Wiernsperger N, Pye S (1997) Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 46:1406–1413. doi: 10.2337/diabetes.46.9.1406 CrossRefPubMedGoogle Scholar
  7. 7.
    Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich J (1995) Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Eng J Med 333:550–554CrossRefGoogle Scholar
  8. 8.
    DeFronzo RA, Barzilai N, Simonson DC (1991) Mechanisms of metformin action in obese and lean NIDDM subjects. J Clin Endocrinol 73:1294–1301CrossRefGoogle Scholar
  9. 9.
    Cusi K, Consoli A, DeFronzo RA (1996) Metabolic effects of metformin on glucose and lactate metabolism in NIDDM. J Clin Endocrinol Metab 81:4059–4067CrossRefPubMedGoogle Scholar
  10. 10.
    Chang AC, Wiensperger N, Muscato N, Knaut M, Neal DW, Cherrington AD (2000) The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis. Metabolism 49:1619–1626. doi: 10153/meta.2000.18561 CrossRefGoogle Scholar
  11. 11.
    Scholz R, Bücher T (1965) Hemoglobin-free perfusion of rat liver. In: Chance B, Estabrook RW, Williamson JR (eds) Control of energy metabolism. Academic Press, New York, pp 393–414Google Scholar
  12. 12.
    Bergmeyer HU, Bernt E (1974) Determination of glucose with glucose oxidase and peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie-Academic Press, Weinheim-London, pp 1205–1215Google Scholar
  13. 13.
    Gutman J, Wahlefeld AW (1974) l-(+)-Lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie-Academic Press, Weinheim-London, pp 1464–1468Google Scholar
  14. 14.
    Czok R, Lamprecht W (1974) Pyruvate, phosphoenolpyruvate and d-glycerate-2-phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie-Academic Press, Weinheim-London, pp 1446–1451Google Scholar
  15. 15.
    Bergmeyer HU (1974) Determination of urea with glutamate dehydrogenase as indicator enzyme. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie-Academic Press, Weinheim-London, pp 1794–1801Google Scholar
  16. 16.
    Lamprecht W, Trautschold I (1974) Adenosine-5′-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie-Academic Press, Weinheim-London, pp 2101–2110Google Scholar
  17. 17.
    Jaworek D, Gruber W, Bergmeyer HU (1974) Adenosine 5′-diphosphate and 5′-monophosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie-Academic Press, Weinheim-London, pp 2127–2131Google Scholar
  18. 18.
    Bracht A, Ishii-Iwamoto EL, Kelmer-Bracht AM (2003) O estudo do metabolismo no fígado em perfusão. In: Bracht A, Ishii-Iwamoto EL (eds) Métodos de Laboratório em Bioquímica. Editora Manole, São Paulo, Brazil, pp 275–289Google Scholar
  19. 19.
    Owen MR, Doran E, Halestrap A (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex I of the mitochondrial respiratory chain. Biochem J 348:607–614CrossRefPubMedGoogle Scholar
  20. 20.
    Chou CH (2000) Uptake and dispersion of metformin in the isolated perfused rat liver. J Pharm Pharmacol 52(8):1011–1016CrossRefPubMedGoogle Scholar
  21. 21.
    Constantin J, Ishii-Iwamoto EL, Suzuki-Kemmelmeier F, Yamamoto NS, Bracht A (1995) Bivascular liver perfusion in the anterograde and retrograde modes: zonation of the response to inhibition of oxidative phosphorylation. Cell Biochem Funct 13:201–209CrossRefPubMedGoogle Scholar
  22. 22.
    Brunmair B, Staniek K, Gras F, Scahrf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhäusl W, Fürnsin C (2004) Thiazolidineodiones, like metformin, inhibit respiratory complex I. A common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059. doi: 10.2337/diabetes.53.4.1052 CrossRefPubMedGoogle Scholar
  23. 23.
    Komori T, Hotta N, Kobayashi M, Sakakibara F, Koh N, Sakamoto N (1993) Biguanides may produce hypoglycemic action in isolated rat hepatocytes through their effects on l-alanine transport. Diabetes Res Clin Pract 22:11–17CrossRefPubMedGoogle Scholar
  24. 24.
    Perrielo G, Misericordia P, Volpi E, Santucci C, Ferrannini E, Ventura MM, Santeusanio F, Brunetti P, Bolli GB (1994) Acute antihyperglycemic mechanisms of metformin in NIDDM: evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes 43:920–928. doi: 10.2337/diabetes.43.7.920 CrossRefGoogle Scholar
  25. 25.
    Gregorio F, Ambrosi F, Marchetti P, Cristallini S, Navalesi R, Brunetti P, Filipponi P (1990) Low dose metformin in the treatment of type II non-insulin-dependent diabetes: clinical and metabolic evaluations. Acta Diabetol 27:139–155. doi: 10.1007/BF02581286 CrossRefGoogle Scholar
  26. 26.
    Fulgencio JP, Kohl C, Girard J, Pégorier J (2001) Effect of metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes. Biochem Pharmacol 62(4):439–446. doi: 10.1016/S000679-7 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. doi: 10.1172/JCI13505 PubMedGoogle Scholar
  28. 28.
    Kim YD, Park K, Lee Y, Park Y, Kim D, Nedumaran B, Jang WG, Cho W, Ha J, Lee I, Lee C, Choi H (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57:306–314. doi: 10.2337/db07-0381 CrossRefPubMedGoogle Scholar
  29. 29.
    Poelge PD, Potter SC, Chandramouli VC, Landan BR, Dang Q, Erion MD (2006) Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in zucker diabetic fatty rats. Diabetes 55:1747–1754. doi: 10.2337/db05-1443 CrossRefGoogle Scholar
  30. 30.
    Spiller HA (1998) Management of antidiabetic medications in overdose. Drug Saf 19:411–424CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Francielli Maria de Souza Silva
    • 1
  • Mário Henrique Rocha Alves da Silva
    • 2
  • Adelar Bracht
    • 2
  • Gabrielle Jacklin Eller
    • 2
  • Rodrigo Polimeni Constantin
    • 2
  • Nair Seiko Yamamoto
    • 2
  1. 1.Faculdade Integrado de Campo MourãoCampo MourãoBrazil
  2. 2.Department of Biochemistry, Laboratory of Liver MetabolismUniversity of MaringáMaringáBrazil

Personalised recommendations