Molecular and Cellular Biochemistry

, Volume 340, Issue 1–2, pp 125–131 | Cite as

High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei

  • Grzegorz Chocian
  • Adrian Chabowski
  • Małgorzata Żendzian-Piotrowska
  • Ewa Harasim
  • Bartłomiej Łukaszuk
  • Jan Górski


Obesity increases the risk for hepatic steatosis. Recent studies have demonstrated that high fat diet (HFD) may affect sphingolipid formation in skeletal muscles, heart, and other tissues. In this work we sought to investigate whether HFD feeding provokes changes in content and fatty acids (FAs) composition of sphingomyelin and ceramide at the level of liver and hepatic nuclei. Furthermore, we investigated whether the ceramide formation is related to the activity of either neutral sphingomyelinase (N-SMase) or acidic sphingomyelinase (A-SMase). Three weeks of HFD provision induced pronounced ceramide and sphingomyelin accumulation in both liver and hepatic nuclei, accompanied by increased activity of N-SMase but not A-SMase. Furthermore, a shift toward greater FAs saturation status in these sphingolipids was also observed. These findings support the conclusion that HFD has a major impact on sphingolipid metabolism not only in the liver, but also in hepatic nuclei.


Ceramide Sphingomyelin Liver Nuclei High fat diet Sphingomyelinase 



This study was supported by Medical University of Bialystok (Grant No. 3-18787 and 3-18717).


  1. 1.
    Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MYu, Obeid LM, Hannun YA (1995) Role for ceramide in cell cycle arrest. J Biol Chem 270(5):2047–2052CrossRefPubMedGoogle Scholar
  2. 2.
    Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269(5):3125–3128PubMedGoogle Scholar
  3. 3.
    Neitcheva T, Peeva D (1995) Phospholipid composition, phospholipase A2 and sphingomyelinase activities in rat liver nuclear membrane and matrix. Int J Biochem Cell Biol 27:995–1001CrossRefPubMedGoogle Scholar
  4. 4.
    James JL, Clawson GA, Chan CH, Smuckler EA (1981) Analysis of the phospholipid of the nuclear envelope and endoplasmic reticulum of liver cells by high pressure liquid chromatography. Lipids 16:541–545CrossRefPubMedGoogle Scholar
  5. 5.
    Albi E, Lazzarini R, Viola Magni M (2008) Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochem J 410(2):381–389CrossRefPubMedGoogle Scholar
  6. 6.
    Rossi G, Viola Magni M, Albi E (2007) Signal transducer and activator of transcription 3 and sphingomyelin metabolism in intranuclear complex during cell proliferation. Arch Biochem Biophys 464:138–143CrossRefPubMedGoogle Scholar
  7. 7.
    Albi E, Viola Magni MP (1997) Chromatin neutral sphingomyelinase and its role in hepatic regeneration. Biochem Biophys Res Commun 236:29–33CrossRefPubMedGoogle Scholar
  8. 8.
    Albi E, Peloso I, Viola Magni MP (1999) Nuclear membrane sphingomyelin-cholesterol changes in rat liver after hepatectomy. Biochem Biophys Res Commun 262:692–695CrossRefPubMedGoogle Scholar
  9. 9.
    Schutze S, Pottho K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776CrossRefPubMedGoogle Scholar
  10. 10.
    Alewijnse AE, Peters SL (2008) Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 585(2–3):292–302CrossRefPubMedGoogle Scholar
  11. 11.
    Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53(5):1215–1221CrossRefPubMedGoogle Scholar
  12. 12.
    Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, Dyck DJ (2007) Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab 293:E172–E181CrossRefPubMedGoogle Scholar
  13. 13.
    Baranowski M, Zabielski P, Blachnio A, Gorski J (2008) Effect of exercise duration on ceramide metabolism in the rat heart. Acta Physiol 192(4):519–529CrossRefGoogle Scholar
  14. 14.
    Samad F, Hester KD, Yang G, Hannun YA, Bielawski J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55(9):2579–2587CrossRefPubMedGoogle Scholar
  15. 15.
    Oosterveer MH, van Dijk TH, Tietge UJ, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud DJ (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 4(6):e6066CrossRefPubMedGoogle Scholar
  16. 16.
    Wierzbicki M, Chabowski A, Żendzian-Piotrowska M, Harasim E, Górski J (2009) Chronic, in vivo, PPARα activation prevents lipid overload in rat liver induced by high fat feeding. Adv Med Sci 54(1):59–65CrossRefPubMedGoogle Scholar
  17. 17.
    Bucki R, Żendzian-Piotrowska M, Nawrocki A, Górski J (1997) Effect of increased uptake of plasma fatty acids by the liver on lipid metabolism in the hepatocellular nuclei. Prostaglandins Leukot Essent Fatty Acids 57(1):27–31CrossRefPubMedGoogle Scholar
  18. 18.
    Górski J, Elsing C, Bucki R, Żendzian-Piotrowska M, Stremmel W (1996) The plasma borne free fatty acids rapidly enter the hepatocellular nuclei. Life Sci 59:2209–2215CrossRefPubMedGoogle Scholar
  19. 19.
    Lamar C, Munger WL, Pitot HC (1967) Studies on a 32s component of nuclear RNA. Arch Biochem Biophys 119:98–104CrossRefPubMedGoogle Scholar
  20. 20.
    Bosser R, Aligué R, Guerini D, Agell N, Carafoli E, Bachs OJ (1993) Calmodulin can modulate protein phosphorylation in rat liver cells nuclei. J Biol Chem 268(21):15477–15483PubMedGoogle Scholar
  21. 21.
    Van der Vusse GJ, Roemen TH, Reneman RS (1980) Assessment of fatty acids in dog left ventricular myocardium. Biochim Biophys Acta 617(2):347–349PubMedGoogle Scholar
  22. 22.
    Previati M, Bertolaso L, Tramarin M, Bertagnolo V, Capitani S (1996) Low nanogram range quantitation of diglycerides and ceramide by high-performance liquid chromatography. Anal Biochem 233:108–114CrossRefPubMedGoogle Scholar
  23. 23.
    Mahadevappa VG, Holub BJJ (1987) Chromatographic analysis of phosphoinositydes and their breakdown products in activated blood platelets/neutrophils. J Chromatogr Libr 37:225Google Scholar
  24. 24.
    Liu B, Hannun YA (2000) Sphingomyelinase assay using radiolabeled substrate. Meth Enzymol 311:164–167CrossRefPubMedGoogle Scholar
  25. 25.
    Zabielski P, Baranowski M, Zendzian-Piotrowska M, Błachnio-Zabielska A, Górski J (2008) Bezafibrate decreases growth stimulatory action of the Sphingomyelin signaling pathway in regenerating rat liver. Prostaglandins Other Lipid Mediat 85(1–2):17–25CrossRefPubMedGoogle Scholar
  26. 26.
    Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933CrossRefPubMedGoogle Scholar
  27. 27.
    Oakes ND, Kennedy CJ, Jenkins AB, Laybutt DR, Chisholm DJ, Kraegen EW (1994) A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 43(10):1203–1210CrossRefPubMedGoogle Scholar
  28. 28.
    Adams LA, Angulo P, Lindor KD (2005) Nonalcoholic fatty liver disease. CMAJ 172:899–905PubMedGoogle Scholar
  29. 29.
    Weiss R (2007) Fat distribution and storage: how much, where, and how? Eur J Endocrinol 157(1):S39–S45CrossRefPubMedGoogle Scholar
  30. 30.
    Ichi I, Nakahara K, Kiso K, Kojo S (2007) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Nutrition 23(7–8):570–574CrossRefPubMedGoogle Scholar
  31. 31.
    Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011CrossRefPubMedGoogle Scholar
  32. 32.
    Gaster M, Rustan AC, Beck-Nielsen H (2005) Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes 54:648–656CrossRefPubMedGoogle Scholar
  33. 33.
    Leyton J, Drury PJ, Crawford MA (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57:383–393CrossRefPubMedGoogle Scholar
  34. 34.
    Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278:10297–10303CrossRefPubMedGoogle Scholar
  35. 35.
    Hu W, Bielawski J, Samad F, Merrill AH Jr, Cowart LA (2009) Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J Lipid Res 50(9):1852–1862CrossRefPubMedGoogle Scholar
  36. 36.
    Chavez JA, Holland WL, Bär J, Sandhoff K, Summers SA (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 280(20):20148–20153CrossRefPubMedGoogle Scholar
  37. 37.
    Shah C, Yang G, Lee I, Bielawski J, Hannun YA, Samad F (2008) Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem 283(20):13538–13548CrossRefPubMedGoogle Scholar
  38. 38.
    Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20:301–317CrossRefPubMedGoogle Scholar
  39. 39.
    Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281(40):29421–29425CrossRefPubMedGoogle Scholar
  40. 40.
    Albi E, Viola-Magni MP (2003) Chromatin-associated sphingomyelin: metabolism in relation to cell function. Cell Biochem Funct 21(3):211–215CrossRefPubMedGoogle Scholar
  41. 41.
    Gao J, Zhang RL, Zhou CQ, Ma Y, Zhuang GL (2009) RNA interference targeting of sphingomyelin phosphodiesterase 1 protects human granulosa cells from apoptosis. J Obstet Gynaecol Res 35(3):421–428CrossRefPubMedGoogle Scholar
  42. 42.
    Abboushi N, El-Hed A, El-Assaad W, Kozhaya L, El-Sabban ME, Bazarbachi A, Badreddine R, Bielawska A, Usta J, Dbaibo GS (2004) Ceramide inhibits IL-2 production by preventing protein kinase C-dependent NF-kappaB activation: possible role in protein kinase Ctheta regulation. Immunology 173(5):3193–3200Google Scholar
  43. 43.
    Ves-Losada A, Maté SM, Brenner RR (2001) Incorporation and distribution of saturated and unsaturated fatty acids into nuclear lipids of hepatic cells. Lipids 36(3):273–282CrossRefPubMedGoogle Scholar
  44. 44.
    Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43(1):1–17CrossRefPubMedGoogle Scholar
  45. 45.
    Koval M, Pagano RE (1991) Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta 1082(2):113–125PubMedGoogle Scholar
  46. 46.
    Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RM (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535CrossRefPubMedGoogle Scholar
  47. 47.
    Mathias S, Younes A, Kan CC, Orlow I, Joseph C, Kolesnick RN (1993) Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259:519–522CrossRefPubMedGoogle Scholar
  48. 48.
    Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60(8):511–518CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Grzegorz Chocian
    • 1
  • Adrian Chabowski
    • 1
  • Małgorzata Żendzian-Piotrowska
    • 1
  • Ewa Harasim
    • 1
  • Bartłomiej Łukaszuk
    • 1
  • Jan Górski
    • 1
  1. 1.Department of PhysiologyMedical University of BiałystokBiałystokPoland

Personalised recommendations