Advertisement

Molecular and Cellular Biochemistry

, Volume 340, Issue 1–2, pp 63–71 | Cite as

Isolation and characterization of a novel zinc finger gene, ZNFD, activating AP1(PMA) transcriptional activities

  • Chen Lei
  • Qingmei Liu
  • Weiping Wang
  • Jun Li
  • Fengqin Xu
  • Yuanze Liu
  • Jiajia Liu
  • Shiliang Wu
  • Minghua Wang
Article

Abstract

ZFPs (Zinc Finger Proteins) play important roles in various cellular functions, including transcriptional activation, transcriptional repression, cell proliferation, and development. C2H2 (Cys-Cys-His-His motif) ZFPs are the most abundant proteins among the founding members of the ZFP super family in eukaryotes. In this study, we isolate a novel C2H2 ZNF (Zinc Finger) gene ZNFD. It contains an ORF (Open Reading Frame) with a length of 990 bp, encoding 329 amino acids. The predicted protein contains a C2H2 zinc finger. RT–PCR analysis in 18 human adult tissues indicated that it was expressed in five human adult tissues. Green fluorescence protein localization analysis showed that human ZNFD was located in the nucleus of Hela cells. Overexpression of ZNFD in the COS7 cells activates the transcriptional activities of AP1(PMA) (Activator of protein 1, that responds specifically to phobol ester). Together the data indicate that ZNFD is probably a new type of C2H2 ZFP and the ZNFD protein may act as a transcriptional activator in PKC (protein kinase C) signal pathway to mediate cellular functions.

Keywords

ZNFD C2H2 ZNF Transcription factor AP1(PMA) PKC signal pathway 

Notes

Acknowledgments

This work was supported by the grant from the National Natural Science Foundation of China (Grant 30700826) and Medicine Development Foundation of Soochow University (EE134709).

References

  1. 1.
    Jeon BN et al (2009) ZBTB2, a novel master regulator of the p53 pathway. J Biol Chem 284:17935–17946CrossRefPubMedGoogle Scholar
  2. 2.
    Khalfallah O et al (2009) Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem cells 27:1643–1653CrossRefPubMedGoogle Scholar
  3. 3.
    Yang Y et al (2009) The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538CrossRefPubMedGoogle Scholar
  4. 4.
    Ding G et al (2009) SysZNF: the C2H2 zinc finger gene database. Nucleic Acids Res 37:D267–D273CrossRefPubMedGoogle Scholar
  5. 5.
    Rosenfeld R, Margalit H (1993) Zinc fingers: conserved properties that can distinguish between spurious and actual DNA-binding motifs. J Biomol Struct Dyn 11:557–570PubMedGoogle Scholar
  6. 6.
    Wu X et al (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–628CrossRefPubMedGoogle Scholar
  7. 7.
    Al-Kandari W et al (2007) ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription. Mol Immunol 44:311–321CrossRefPubMedGoogle Scholar
  8. 8.
    Schuh R et al (1986) A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47:1025–1032CrossRefPubMedGoogle Scholar
  9. 9.
    Klug A, Schwabe JW (1995) Protein motifs 5. Zinc fingers. FASEB J 9:597–604PubMedGoogle Scholar
  10. 10.
    Dai KS, Liew CC (1999) Chromosomal, in silico and in vitro expression analysis of cardiovascular-based genes encoding zinc finger proteins. J Mol Cell Cardiol 31:1749–1769CrossRefPubMedGoogle Scholar
  11. 11.
    Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  12. 12.
    Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMedGoogle Scholar
  13. 13.
    Clough RL et al (2009) Functional dissection of the alpha-synuclein promoter: transcriptional regulation by ZSCAN21 and ZNF219. J Neurochem 110:1479–1490CrossRefPubMedGoogle Scholar
  14. 14.
    Leung SW et al (2009) Splice variants of the human ZC3H14 gene generate multiple isoforms of a zinc finger polyadenosine RNA binding protein. Gene 439:71–78CrossRefPubMedGoogle Scholar
  15. 15.
    Dempsey EC et al (2000) Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol 279:L429–L438Google Scholar
  16. 16.
    Stabel S, Parker PJ (1991) Protein kinase C. Pharmacol Ther 51:71–95CrossRefPubMedGoogle Scholar
  17. 17.
    Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498CrossRefPubMedGoogle Scholar
  18. 18.
    Newton AC (1997) Regulation of protein kinase C. Curr Opin Cell Biol 9:161–167CrossRefPubMedGoogle Scholar
  19. 19.
    Suzuki C et al (2008) A novel GDNF-inducible gene, BMZF3, encodes a transcriptional repressor associated with KAP-1. Biochem Biophys Res Commun 366:226–232CrossRefPubMedGoogle Scholar
  20. 20.
    Messina DN et al (2004) An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression. Genome Res 14:2041–2047CrossRefPubMedGoogle Scholar
  21. 21.
    Gao L et al (2004) Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library. Biochem Biophys Res Commun 325:1145–1152CrossRefPubMedGoogle Scholar
  22. 22.
    Li J et al (2007) ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway. Biochem Biophys Res Commun 363:895–900CrossRefPubMedGoogle Scholar
  23. 23.
    Berry N, Nishizuka Y (1990) Protein kinase C and T cell activation. Eur J Biochem 189:205–214CrossRefPubMedGoogle Scholar
  24. 24.
    Gescher A, Dale IL (1989) Protein kinase C—a novel target for rational anti-cancer drug design? Anticancer Drug Des 4:93–105PubMedGoogle Scholar
  25. 25.
    Murray NR et al (1993) Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation. J Biol Chem 268:15847–15853PubMedGoogle Scholar
  26. 26.
    Hocevar BA et al (1992) Protein kinase C isotypes in human erythroleukemia cell proliferation and differentiation. J Cell Sci 101(Pt 3):671–679PubMedGoogle Scholar
  27. 27.
    Hocevar BA, Fields AP (1991) Selective translocation of beta II-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 266:28–33PubMedGoogle Scholar
  28. 28.
    Kraft AS et al (1986) Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci USA 83:1334–1338CrossRefPubMedGoogle Scholar
  29. 29.
    Hocevar BA et al (1993) Identification of protein kinase C (PKC) phosphorylation sites on human lamin B. Potential role of PKC in nuclear lamina structural dynamics. J Biol Chem 268:7545–7552PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Chen Lei
    • 1
  • Qingmei Liu
    • 1
  • Weiping Wang
    • 1
  • Jun Li
    • 2
  • Fengqin Xu
    • 1
  • Yuanze Liu
    • 1
  • Jiajia Liu
    • 1
  • Shiliang Wu
    • 1
  • Minghua Wang
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Medical CollegeSoochow UniversitySuzhouChina
  2. 2.Laboratory of Aging and Nervous Diseases, Medical CollegeSoochow UniversitySuzhouChina

Personalised recommendations