Molecular and Cellular Biochemistry

, Volume 339, Issue 1–2, pp 163–171 | Cite as

Regulating A549 cells growth by ASO inhibiting miRNA expression

  • Ping-Yu Wang
  • You-Jie Li
  • Shuai Zhang
  • Zun-Ling Li
  • Zhen Yue
  • Ning Xie
  • Shu-Yang Xie


MicroRNAs (miRNAs) have a profound impact on cell processes, including proliferation, apoptosis, and stress responses. We aimed to explore the role of antisense oligonucleotide (ASO) to induce proliferation or apoptosis of A549 cancer cells by inhibiting the expression of miRNAs. After A549/HBE/293T cells were treated with ASO, cells proliferation/apoptosis, and their relevant oncogenes/tumor suppressor genes were detected by light and electron microscopy, real-time PCR, enzyme-linked immunosorbent assay, etc. The results showed that ASO could inhibit the expression of miRNAs effectively. miR-16, miR-17, miR-34a–c, and miR-125 served as tumor suppressor miRNAs, while miR-20, miR-106, and miR-150 acted as oncogenic miRNAs. Our results also indicated that miR-16/34a–c, miR-17-5p, miR-125, miR-106, and miR-150 were the upstream factors, which could regulate the expression of BCL-2, E2F1, E2F3, RB1, and P53, respectively. After A549 cells treated with ASO for 24 h and different concentrations of anti-cancer drug (cisplatin or demethylcantharidin) were added into culture medium, the results indicated the percentage of alive cells in group treated with both ASO-106 (or ASO-150) and anti-cancer drug was lower than that in group treated with ASO, or anti-cancer drug, or both ASO-16 (or ASO-34a) and anti-cancer drug. In conclusion, ASO (specific to oncogenic miRNAs) could induce A549 cells apoptosis by inhibiting oncogenic miRNAs, and could increase chemotherapy sensitivity of A549 cells to anti-cancer drug, which holds great promise to lung cancer therapy.


Antisense oligonucleotides miRNAs Apoptosis Gene expression Chemotherapy 



Antisense oligonucleotide






RNA-induced silencing complex




Small interfering RNA



A549 Cells

Human lung adenocarcinoma epithelial cell line

HBE Cells

Normal human bronchial epithelium cells

293T Cells

Human embryonic kidney cells


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Dimethyl sulfoxide


Enzyme-linked immunosorbent assay


Propidium iodide



This study was supported by National Natural Science Foundation of China (No. 30801324), Foundation of Shan Dong Science and Technology Committee (No. 2007BS03048, 2009ZRB01212), and Yantai Science and Technology Committee (No. 2007153), China. We also thank Wenbo Liu, Xiuwen Wang, Cheng Yang, Xiaodong Song, Jinjin Zhang, and Lixia Zhang (Experimental Central Lab of Binzhou Medical University) for their help of electron microscopy and flow cytometry analysis.

Supplementary material

11010_2009_380_MOESM1_ESM.doc (1.6 mb)
(DOC 1608 kb)


  1. 1.
    Kusenda B, Mraz M, Mayer J, Pospisilova S (2006) MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:205–215PubMedGoogle Scholar
  2. 2.
    Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613CrossRefPubMedGoogle Scholar
  3. 3.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934CrossRefPubMedGoogle Scholar
  4. 4.
    Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974CrossRefPubMedGoogle Scholar
  5. 5.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862CrossRefPubMedGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  7. 7.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359CrossRefPubMedGoogle Scholar
  8. 8.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688CrossRefPubMedGoogle Scholar
  9. 9.
    Ho PT, Parkinson DR (1997) Antisense oligonucleotides as therapeutics for malignant diseases. Semin Oncol 24:187–202PubMedGoogle Scholar
  10. 10.
    Crooke ST (1998) Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic Acid Drug Dev 8:133–134PubMedGoogle Scholar
  11. 11.
    Stahel RA, Zangemeister-Wittke U (2003) Antisense oligonucleotides for cancer therapy—an overview. Lung Cancer 41:S81–S88CrossRefPubMedGoogle Scholar
  12. 12.
    Wacheck V, Zangemeister-Wittke U (2006) Antisense molecules for targeted cancer therapy. Crit Rev Oncol Hematol 59:65–73CrossRefPubMedGoogle Scholar
  13. 13.
    Visone R, Croce CM (2009) MiRNAs and cancer. Am J Pathol 174:1131–1138CrossRefPubMedGoogle Scholar
  14. 14.
    Ren H, Tian L, Gu Q, Zhu W (2006) Secalonic acid D; A cytotoxic constituent from marine lichen-derived fungus Gliocladium sp. T31. Arch Pharm Res 29:59–63CrossRefPubMedGoogle Scholar
  15. 15.
    O’Donovan DJ, Katkin JP, Tamura T, Smith CV, Welty SE (2000) Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase. Am J Respir Cell Mol Biol 22:732–738PubMedGoogle Scholar
  16. 16.
    Trotter PJ, Orchard MA, Walker JH (1995) Ca2+ concentration during binding determines the manner in which annexin V binds to membranes. Biochem J 308:591–598PubMedGoogle Scholar
  17. 17.
    Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang H et al (2007) Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res 67:7901–7906CrossRefPubMedGoogle Scholar
  18. 18.
    Videhult P, Yachnin J, Jerremalm E, Lewensohn R, Ehrsson H (2002) Synthesis and cytotoxicity of the dihydrated complex of oxaliplatin. Cancer Lett 80:191–194CrossRefGoogle Scholar
  19. 19.
    Efferth T, Rauh R, Kahl S, Tomicic M, Böchzelt H, Tome ME et al (2005) Molecular modes of action of cantharidin in tumor cells. Biochem Pharmacol 69:811–818CrossRefPubMedGoogle Scholar
  20. 20.
    To KK, Ho YP, Au-Yeung SC (2005) Synergistic interaction between platinum-based antitumor agents and demethylcantharidin. Cancer Lett 223:227–237CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297CrossRefPubMedGoogle Scholar
  22. 22.
    van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T et al (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37:20–28CrossRefPubMedGoogle Scholar
  23. 23.
    Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39:167–169CrossRefPubMedGoogle Scholar
  24. 24.
    Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ et al (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249CrossRefPubMedGoogle Scholar
  25. 25.
    Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632CrossRefPubMedGoogle Scholar
  26. 26.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMedGoogle Scholar
  27. 27.
    Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181CrossRefPubMedGoogle Scholar
  28. 28.
    Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al (2009) The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106:2812–2817CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou L, Qi X, Potashkin JA, Abdul-Karim FW, Gorodeski GI (2008) MicroRNAs miR-186 and miR-150 down-regulate expression of the pro-apoptotic purinergic P2X7 receptor by activation of instability sites at the 3′-untranslated region of the gene that decrease steady-state levels of the transcript. J Biol Chem 283:28274–28286CrossRefPubMedGoogle Scholar
  30. 30.
    Nakao M, Horiike S, Fukushima-Nakase Y, Nishimura M, Fujita Y, Taniwaki M et al (2004) Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Br J Haematol 125:709–719CrossRefPubMedGoogle Scholar
  31. 31.
    Scherr M, Venturini L, Battmer K, Schaller-Schoenitz M, Schaefer D, Dallmann I et al (2007) Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res 35:e149CrossRefPubMedGoogle Scholar
  32. 32.
    Tan LP, Wang M, Robertus JL, Schakel RN, Gibcus JH, Diepstra A et al (2009) miRNA profiling of B-cell subsets: specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes. Lab Invest 89:708–716CrossRefPubMedGoogle Scholar
  33. 33.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529CrossRefPubMedGoogle Scholar
  34. 34.
    Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20CrossRefPubMedGoogle Scholar
  35. 35.
    Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065CrossRefPubMedGoogle Scholar
  36. 36.
    Kato M, Paranjape T, Ullrich R, Nallur S, Gillespie E, Keane K et al (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28:2419–2424CrossRefPubMedGoogle Scholar
  37. 37.
    Zenz T, Mohr J, Eldering E, Kater AP, Bühler A, Kienle D et al (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808CrossRefPubMedGoogle Scholar
  38. 38.
    Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105:13421–13426CrossRefPubMedGoogle Scholar
  39. 39.
    Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355CrossRefPubMedGoogle Scholar
  40. 40.
    Dykxhoorn DM, Chowdhury D, Lieberman J (2008) RNA interference and cancer: endogenous pathways and therapeutic approaches. Adv Exp Med Biol 615:299–329CrossRefPubMedGoogle Scholar
  41. 41.
    Stenvang J, Kauppinen S (2008) MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 8:59–81CrossRefPubMedGoogle Scholar
  42. 42.
    Blenkiron C, Miska EA (2007) miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 16:R106–R113CrossRefPubMedGoogle Scholar
  43. 43.
    Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550CrossRefPubMedGoogle Scholar
  44. 44.
    Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34:2294–2304CrossRefPubMedGoogle Scholar
  45. 45.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756CrossRefPubMedGoogle Scholar
  46. 46.
    Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF et al (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Ping-Yu Wang
    • 1
  • You-Jie Li
    • 1
  • Shuai Zhang
    • 1
  • Zun-Ling Li
    • 1
  • Zhen Yue
    • 1
  • Ning Xie
    • 2
  • Shu-Yang Xie
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Institute of Medical Molecular GeneticsBinzhou Medical UniversityYan Tai CityPeople’s Republic of China
  2. 2.Medical School of Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations