Advertisement

Molecular and Cellular Biochemistry

, Volume 334, Issue 1–2, pp 81–98 | Cite as

Ligand-mediated endocytosis and intracellular sequestration of guanylyl cyclase/natriuretic peptide receptors: role of GDAY motif

  • Kailash N. Pandey
Article

Abstract

The guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), also referred to as GC-A, is a single polypeptide molecule having a critical function in blood pressure regulation and cardiovascular homeostasis. GC-A/NPRA, which resides in the plasma membrane, consists of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular cytoplasmic region containing a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic domain. After binding with atrial and brain natriuretic peptides (ANP and BNP), GC-A/NPRA is internalized and sequestered into intracellular compartments. Therefore, GC-A/NPRA is a dynamic cellular macromolecule that traverses different subcellular compartments through its lifetime. This review describes the roles of short-signal sequences in the internalization, trafficking, and intracellular redistribution of GC-A/NPRA from cell surface to cell interior. Evidence indicates that, after internalization, the ligand–receptor complexes dissociate inside the cell and a population of GC-A/NPRA recycles back to the plasma membrane. Subsequently, the disassociated ligands are degraded in the lysosomes. However, a small percentage of the ligand escapes the lysosomal degradative pathway, and is released intact into culture medium. Using pharmacologic and molecular perturbants, emphasis has been placed on the cellular regulation and processing of ligand-bound GC-A/NPRA in terms of receptor trafficking and down-regulation in intact cells. The discussion is concluded by examining the functions of short-signal sequence motifs in the cellular life-cycle of GC-A/NPRA, including endocytosis, trafficking, metabolic processing, inactivation, and/or down-regulation in model cell systems.

Keywords

Atrial and brain natriuretic peptides Guanylyl cyclase/natriuretic peptide receptors Internalization and trafficking Short-sequence signal motifs 

Notes

Acknowledgments

I thank my wife Kamala Pandey for her assistance in preparing this manuscript. I also offer my special thanks to Dr. Bharat B. Aggarwal, Department of Experimental Therapeutics and Cytokine Research Laboratory at MD Anderson Cancer Center, Houston, TX, and Dr. Susan L. Hamilton, Department of Molecular Physiology and Biophysics at Baylor College of Medicine, Houston, TX, who made their facilities available to us during our displacement due to Hurricane Katrina. This study, in the author’s laboratory, was supported by grants from the National Institutes of Health (HL57531 and R56 HL57531).

References

  1. 1.
    de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94PubMedGoogle Scholar
  2. 2.
    Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70:665–699PubMedGoogle Scholar
  3. 3.
    de Bold AJ (1985) Atrial natriuretic factor: a hormone produced by the heart. Science 230:767–770PubMedGoogle Scholar
  4. 4.
    Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328PubMedGoogle Scholar
  5. 5.
    Pandey KN (2005) Biology of natriuretic peptides and their receptors. Peptides 26:901–932PubMedGoogle Scholar
  6. 6.
    Pandey KN (2008) Emerging roles of natriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation. J Am Soc Hypert 2:210–226Google Scholar
  7. 7.
    Ellmers LJ, Scott NJ, Piuhola J, Maeda N, Smithies O, Frampton CM, Richards AM, Cameron VA (2007) Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J Mol Endocrinol 38:245–257PubMedGoogle Scholar
  8. 8.
    Pandey KN (1996) Vascular action natriuretic peptide receptor. In: Sowers JR (ed) Contemporary endocrinology: endocrinology of the vasculature. Humana Press Inc., Totawa, pp 255–267Google Scholar
  9. 9.
    Khurana ML, Pandey KN (1993) Receptor-mediated stimulatory effect of atrial natriuretic factor, brain natriuretic peptide, and C-type natriuretic peptide on testosterone production in purified mouse Leydig cells: activation of cholesterol side-chain cleavage enzyme. Endocrinology 133:2141–2149PubMedGoogle Scholar
  10. 10.
    McGrath MF, de Bold ML, de Bold AJ (2005) The endocrine function of the heart. Trends Endocrinol Metab 16:469–477PubMedGoogle Scholar
  11. 11.
    Garbers DL (1992) Guanylyl cyclase receptors and their endocrine, paracrine and autocrine ligands. Cell 71:1–4PubMedGoogle Scholar
  12. 12.
    Koller KJ, de Sauvage FJ, Lowe DG, Goeddel DV (1992) Conservation of the kinase-like regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclase. Mol Cell Biol 12:2581–2590PubMedGoogle Scholar
  13. 13.
    Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors and their ligands. Endocr Rev 15:135–162PubMedGoogle Scholar
  14. 14.
    Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30PubMedGoogle Scholar
  15. 15.
    Duda T, Venkataraman V, Ravichandran S, Sharma RK (2005) ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 26:969–984PubMedGoogle Scholar
  16. 16.
    Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414PubMedGoogle Scholar
  17. 17.
    Pandey KN (1997) Physiology of the natriuretic peptides gonadal function. Humana Press, Totawa, NJ, pp 171–191Google Scholar
  18. 18.
    Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252:120–123PubMedGoogle Scholar
  19. 19.
    Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta possible existence of vascular natriuretic peptide system. J Clin Invest 90:1145–1149PubMedGoogle Scholar
  20. 20.
    Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68PubMedGoogle Scholar
  21. 21.
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735PubMedGoogle Scholar
  22. 22.
    Sekiguchi T, Miyamoto K, Mizutani T, Yamada K, Yazawa T, Yoshino M, Minegishi T, Takei Y, Kangawa K, Minamino N, Saito Y, Kojima M (2001) Molecular cloning of natriuretic peptide receptor A from bullfrog (Rana catesbeiana) brain and its functional expression. Gene 273:251–257PubMedGoogle Scholar
  23. 23.
    Shi SJ, Nguyen HT, Sharma GD, Navar LG, Pandey KN (2001) Genetic disruption of atrial natriuretic peptide receptor-A alters renin and angiotensin II levels. Am J Physiol 281:F665–F673Google Scholar
  24. 24.
    Vellaichamy E, Khurana ML, Fink J, Pandey KN (2005) Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem 280:19230–19242PubMedGoogle Scholar
  25. 25.
    Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O (1998) Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA 95:2547–2551PubMedGoogle Scholar
  26. 26.
    Shi SJ, Vellaichamy E, Chin SY, Smithies O, Navar LG, Pandey KN (2003) Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion. Am J Physiol 285:F694–F702Google Scholar
  27. 27.
    Pandey KN, Oliver PM, Maeda N, Smithies O (1999) Hypertension associated with decreased testosterone levels in natriuretic peptide receptor-A gene-knockout and gene-duplicated mutant mouse models. Endocrinology 140:5112–5119PubMedGoogle Scholar
  28. 28.
    Pandey KN, Inagami T, Misono KS (1986) Atrial natriuretic factor receptor on cultured Leydig tumor cells: ligand binding and photoaffinity labeling. Biochemistry 25:8467–8472PubMedGoogle Scholar
  29. 29.
    Pandey KN (1993) Stoichiometric analysis of internalization, recycling, and redistribution of photoaffinity-labeled guanylate cyclase/atrial natriuretic factor receptors in cultured murine Leydig tumor cells. J Biol Chem 268:4382–4390PubMedGoogle Scholar
  30. 30.
    Pandey KN (2009) Functional roles of short sequence motifs in the endocytosis of membrane receptors. Front Biosci 14:5339–5360PubMedGoogle Scholar
  31. 31.
    Pandey KN, Kumar R, Li M, Nguyen H (2000) Functional domains and expression of truncated atrial natriuretic peptide receptor-A: the carboxyl-terminal regions direct the receptor internalization and sequestration in COS-7 cells. Mol Pharmacol 57:259–267PubMedGoogle Scholar
  32. 32.
    Pandey KN, Nguyen HT, Sharma GD, Shi SJ, Kriegel AM (2002) Ligand-regulated internalization, trafficking, and down-regulation of guanylyl cyclase/atrial natriuretic peptide receptor-A in human embryonic kidney 293 cells. J Biol Chem 277:4618–4627PubMedGoogle Scholar
  33. 33.
    Maack T (1996) The role of atrial natriuretic factor in volume control. Kidney Int 49:1732–1737PubMedGoogle Scholar
  34. 34.
    Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83PubMedGoogle Scholar
  35. 35.
    Lowe DG, Chang M-S, Hellmis R, Chen E, Singh S, Garbers DL, Goeddel DV (1989) Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–1384PubMedGoogle Scholar
  36. 36.
    Pandey KN, Singh S (1990) Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265:12342–12348PubMedGoogle Scholar
  37. 37.
    Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162PubMedGoogle Scholar
  38. 38.
    Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341:68–72PubMedGoogle Scholar
  39. 39.
    Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB (1988) Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401PubMedGoogle Scholar
  40. 40.
    Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptor and signal transduction mechanisms. Pharmacol Rev 45:455–497PubMedGoogle Scholar
  41. 41.
    Foster DC, Garbers DL (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J Biol Chem 273:16311–16318PubMedGoogle Scholar
  42. 42.
    Duda T, Goraczniak RM, Sharma RK (1993) Core sequence of ATP regulatory module in receptor guanylate cyclases. FEBS Lett 315:143–148PubMedGoogle Scholar
  43. 43.
    Koller KJ, Lipari MT, Goeddel DV (1993) Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268:5997–6003PubMedGoogle Scholar
  44. 44.
    Goraczniak RM, Duda T, Sharma RK (1992) A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282(Pt 2):533–537PubMedGoogle Scholar
  45. 45.
    Burczynska B, Duda T, Sharma RK (2007) ATP signaling site in the ARM domain of atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 301:93–107PubMedGoogle Scholar
  46. 46.
    Liu Y, Ruoho ER, Rao VD, Hurley JH (1997) Catalytic mechanism of the adenylyl cyclase Modeling and mutational analysis. Proc Natl Acad Sci USA 94:13414–13419PubMedGoogle Scholar
  47. 47.
    Sunahara RK, Beuve A, Tesmer JJG, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclase. J Biol Chem 273:16332–16338PubMedGoogle Scholar
  48. 48.
    Tucker CL, Hurley JH, Miller TR, Hurley JB (1998) Two amino acid substitutions convert a guanylyl cyclase, Ret GC-1 into an adenylyl cyclase. Proc Natl Acad Sci USA 95:5993–5997PubMedGoogle Scholar
  49. 49.
    Labrecque J, McNicoll N, Marquis M, De Lean A (1999) A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity Role of receptor dimerization in signal transduction. J Biol Chem 274:9752–9759PubMedGoogle Scholar
  50. 50.
    Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34:4696–4701PubMedGoogle Scholar
  51. 51.
    Yang RB, Garbers DL (1997) Two eye guanylyl cyclase are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742PubMedGoogle Scholar
  52. 52.
    van den Akker F, Zang X, Miyagi H, Huo X, Misono KS, Yee VC (2000) Structure of the dimerized hormone-binding domain of a guanylyl cyclase-coupled receptor. Nature 406:101–104PubMedGoogle Scholar
  53. 53.
    Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30714–30744Google Scholar
  54. 54.
    Qiu Y, Ogawa H, Miyagi M, Misono KS (2004) Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface: role of the dimer structure in signaling. J Biol Chem 279:6115–6123PubMedGoogle Scholar
  55. 55.
    Misono KS, Ogawa H, Qiu Y, Ogata CM (2005) Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction. Peptides 26:957–968PubMedGoogle Scholar
  56. 56.
    He X, Chow D, Martick MM, Garcia KC (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293:1657–1662Google Scholar
  57. 57.
    He XL, Dukkipati A, Wang X, Garcia KC (2005) A new paradigm for hormone recognition and allosteric receptor activation revealed from structural studies of NPR-C. Peptides 26:1035–1043PubMedGoogle Scholar
  58. 58.
    van den Akker F (2001) Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J Mol Biol 311:923–937PubMedGoogle Scholar
  59. 59.
    De Lean A, McNicoll N, Labrecque J (2003) Natriuretic peptide receptor A activation stabilizes a membrane-distal dimer interface. J Biol Chem 278:11159–11166PubMedGoogle Scholar
  60. 60.
    Sun JZ, Oparil S, Lucchesi P, Thompson JA, Chen YF (2001) Tyrosine kinase receptor activation inhibits NPR-C in lung arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 281:L155–L163PubMedGoogle Scholar
  61. 61.
    Nakayama T, Soma M, Takahashi Y, Rehemudula D, Sato M, Uwabo J, Izumi Y, Kanmatsuse K (1999) Nucleotide sequence of the 5′-flanking region of the type A human natriuretic peptide receptor gene and association analysis using a novel microsatellite in essential hypertension. Am J Hypertens 12:1144–1148PubMedGoogle Scholar
  62. 62.
    Garg R, Oliver PM, Maeda N, Pandey KN (2002) Genomic structure, organization, and promoter region analysis of murine guanylyl cyclase/atrial natriuretic peptide receptor-A gene. Gene 291:123–133PubMedGoogle Scholar
  63. 63.
    Yamagami S, Suzuki K, Suzuki N (2001) Expression and exon/intron organization of two medaka fish homologs of the mammalian guanylyl cyclase A. J Biochem 130:39–50PubMedGoogle Scholar
  64. 64.
    Schramek H, Gstraunthaler G, Willinger CC, Pfaller W (1993) Hyperosmolality regulates endothelin release by Madin-Darby canine kidney cells. J Am Soc Nephrol 4:206–213PubMedGoogle Scholar
  65. 65.
    Kashiwagi M, Miyamoto K, Takei Y, Hirose S (1999) Cloning, properties and tissue distribution of natriuretic peptide receptor-A of euryhaline eel, Anguilla japonica. Eur J Biochem 259:204–211PubMedGoogle Scholar
  66. 66.
    Woodard GE, Zhao J, Rosado JA, Brown J (2002) A-type natriuretic peptide receptor in the spontaneously hypertensive rat kidney. Peptides 23:1637–1647PubMedGoogle Scholar
  67. 67.
    Pandey KN, Nguyen HT, Li M, Boyle JW (2000) Natriuretic peptide receptor-A negatively regulates mitogen-activated protein kinase and proliferation of mesangial cells: role of cGMP-dependent protein kinase. Biochem Biophys Res Commun 271:374–379PubMedGoogle Scholar
  68. 68.
    Cao L, Chen SC, Cheng T, Humphreys MH, Gardner DG (1998) Ligand-dependent regulation of NPR-A gene expression in inner medullary collecting duct cells. Am J Physiol 275:F119–F125PubMedGoogle Scholar
  69. 69.
    Cao L, Wu J, Gardner DG (1995) Atrial natriuretic peptide suppresses the transcription of its guanylyl cyclase-linked receptor. J Biol Chem 270:24891–24897PubMedGoogle Scholar
  70. 70.
    Hum D, Besnard S, Sanchez R, Devost D, Gossard F, Hamet P, Tremblay J (2004) Characterization of a cGMP-response element in the guanylyl cyclase/natriuretic peptide receptor A gene promoter. Hypertension 43:1270–1278PubMedGoogle Scholar
  71. 71.
    Placier S, Bretot X, Ardaillou N, Dussaule JC, Ardaillou R (2001) Regulation of ANP clearance receptors by EGF in mesangial cells from NOD mice. Am J Physiol Renal Physiol 281:F244–F254PubMedGoogle Scholar
  72. 72.
    Khurana ML, Pandey KN (1994) Modulation of guanylate cyclase-coupled atrial natriuretic factor receptor activity by mastoparan and ANF in murine Leydig tumor cells: role of G-proteins. Biochim Biophys Acta 1224:61–67PubMedGoogle Scholar
  73. 73.
    Kumar R, Cartledge WA, Lincoln TM, Pandey KN (1997) Expression of guanylyl cyclase-A/atrial natriuretic peptide receptor blocks the activation of protein kinase C in vascular smooth muscle cells. Role of cGMP and cGMP-dependent protein kinase. Hypertension 29:414–421PubMedGoogle Scholar
  74. 74.
    Kumar R, von Geldern TW, Calle RA, Pandey KN (1997) Stimulation of atrial natriuretic peptide receptor/guanylyl cyclase- A signaling pathway antagonizes the activation of protein kinase C-alpha in murine Leydig cells. Biochim Biophys Acta 1356:221–228PubMedGoogle Scholar
  75. 75.
    Yasunari K, Kohno M, Murakawa K, Yokokawa K, Takeda T (1990) Glucocorticoids and atrial natriuretic factor receptors on vascular smooth muscle. Hypertension 16:581–586PubMedGoogle Scholar
  76. 76.
    Yasunari K, Kohno M, Murakawa K, Yokokawa K, Takeda T (1988) Effect of glucocorticoid on prostaglandin E1 mediated cyclic AMP formation by vascular smooth muscle cells. J Hypertens 6:1023–1028PubMedGoogle Scholar
  77. 77.
    Yang T, Terada Y, Nonoguchi H, Ujiie K, Tomita K, Marumo F (1993) Effect of hyperosmolality on production and mRNA expression of ET-1 in inner medullary collecting duct. Am J Physiol 264:F684–F689PubMedGoogle Scholar
  78. 78.
    Lanier-Smith KL, Currie MG (1991) Glucocorticoid regulation of atrial natriuretic peptide receptors on cultured endothelial cells. Endocrinology 129:2311–2317PubMedGoogle Scholar
  79. 79.
    Nuglozeh E, Mbikay M, Stewart DJ, Legault L (1997) Rat natriuretic peptide receptor genes are regulated by glucocorticoids in vitro. Life Sci 61:2143–2155PubMedGoogle Scholar
  80. 80.
    Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de Gasparo M (1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206–211PubMedGoogle Scholar
  81. 81.
    Garg R, Pandey KN (2003) Angiotensin II-mediated negative regulation of Npr1 promoter activity and gene transcription. Hypertension 41:730–736PubMedGoogle Scholar
  82. 82.
    Haneda M, Kikkawa R, Maeda S, Togawa M, Koya D, Horide N, Kajiwara N, Shigeta Y (1991) Dual mechanism of angiotensin II inhibits ANP-induced mesangial cGMP accumulation. Kidney Int 40:188–194PubMedGoogle Scholar
  83. 83.
    Smale ST, Schmidt MC, Berk AJ, Baltimore D (1990) Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA 87:4509–4513PubMedGoogle Scholar
  84. 84.
    Sudhir K, Jennings GL, Esler MD, Korner PI, Blombery PA, Lambert GW, Scoggins B, Whitworth JA (1989) Hydrocortisone-induced hypertension in humans: pressor responsiveness and sympathetic function. Hypertension 13:416–421PubMedGoogle Scholar
  85. 85.
    Arise KK, Pandey KN (2006) Inhibition and down-regulation of gene transcription and guanylyl cyclase activity of NPRA by angiotensin II involving protein kinase C. Biochem Biophys Res Commun 349:131–135PubMedGoogle Scholar
  86. 86.
    Agui T, Xin X, Cai Y, Shim G, Muramatsu Y, Yamada T, Fujiwara H, Matsumoto K (1995) Opposite actions of transforming growth factor-beta 1 on the gene expression of atrial natriuretic peptide biological and clearance receptors in a murine thymic stromal cell line. J Biochem 118:500–507PubMedGoogle Scholar
  87. 87.
    Fujio N, Gossard F, Bayard F, Tremblay J (1994) Regulation of natriuretic peptide receptor A and B expression by transforming growth factor-beta 1 in cultured aortic smooth muscle cells. Hypertension 23:908–913PubMedGoogle Scholar
  88. 88.
    Berl T, Mansour J, Veis JH (1992) Regulation of atrial natriuretic peptide-stimulated cGMP production in the inner medulla. Kidney Int 41:37–42PubMedGoogle Scholar
  89. 89.
    Chen S, Cao L, Intengan HD, Humphreys M, Gardner DG (2002) Osmoregulation of endothelial nitric-oxide synthase gene expression in inner medullary collecting duct cells. Role in activation of the type A natriuretic peptide receptor. J Biol Chem 277:32498–32504PubMedGoogle Scholar
  90. 90.
    Chen S, Gardner DG (2002) Osmoregulation of natriuretic peptide receptor signaling in inner medullary collecting duct. A requirement for p38 MAPK. J Biol Chem 277:6037–6043PubMedGoogle Scholar
  91. 91.
    Iimura O, Kusano E, Ishida F, Oono S, Ando Y, Asano Y (1995) Hyperosmolality rapidly reduces atrial-natriuretic-peptide-dependent cyclic guanosine monophosphate production in cultured rat inner medullary collecting duct cells. Pflugers Arch 430:81–87PubMedGoogle Scholar
  92. 92.
    Katafuchi T, Mizuno T, Hagiwara H, Itakura M, Ito T, Hirose S (1992) Modulation by NaCl of atrial natriuretic peptide receptor levels and cyclic GMP responsiveness to atrial natriuretic peptide of cultured vascular endothelial cells. J Biol Chem 267:7624–7629PubMedGoogle Scholar
  93. 93.
    Shields PP, Dixon JE, Glembotski CC (1988) The secretion of atrial natriuretic factor-(99-126) by cultured cardiac myocytes is regulated by glucocorticoids. J Biol Chem 263:12619–12628PubMedGoogle Scholar
  94. 94.
    Itoh H, Bird IM, Nakao K, Magness RR (1998) Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic, arteries. Endocrinology 139:3329–3341PubMedGoogle Scholar
  95. 95.
    Mulay S, Omer S, Vaillancourt P, D’Sylva S, Singh A, Varma DR (1994) Hormonal modulation of atrial natriuretic factor receptors and effects on adrenal glomerulosa cells of female rats. Life Sci 55:PL169–PL176PubMedGoogle Scholar
  96. 96.
    Omer S, Vaillancourt P, Peri KG, Varma DR, Mulay S (1997) Downregulation of renal atrial natriuretic factor receptors and receptor mRNAs during rat pregnancy. Am J Physiol 272:F87–F93PubMedGoogle Scholar
  97. 97.
    Tucker RF, Volkenant ME, Branum EL, Moses HL (1983) Comparison of intra- and extracellular transforming growth factors from nontransformed and chemically transformed mouse embryo cells. Cancer Res 43:1581–1586PubMedGoogle Scholar
  98. 98.
    Vaillancourt P, Omer S, Deng XF, Mulay S, Varma DR (1998) Differential effects of rat pregnancy on uterine and lung atrial natriuretic factor receptors. Am J Physiol 274:E52–E56PubMedGoogle Scholar
  99. 99.
    Bonhomme MC, Garcia R (1993) Heterogeneous regulation of renal atrial natriuretic factor receptor subtypes in one-kidney, one clip hypertensive rats. J Hypertens 11:389–397PubMedGoogle Scholar
  100. 100.
    Brown LA, Nunez DJ, Wilkins MR (1993) Differential regulation of natriuretic peptide receptor messenger RNAs during the development of cardiac hypertrophy in the rat. J Clin Invest 92:2702–2712PubMedGoogle Scholar
  101. 101.
    De Leon H, Garcia R (1991) Regulation of glomerular atrial natriuretic factor receptor subtypes by renal sympathetic nerves. Am J Physiol 260:R1043–R1050PubMedGoogle Scholar
  102. 102.
    Dessi-Fulgheri P, Sarzani R, Tamburrini P, Moraca A, Espinosa E, Cola G, Giantomassi L, Rappelli A (1997) Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 15:1695–1699PubMedGoogle Scholar
  103. 103.
    Goto M, Itoh H, Tanaka I, Suga S, Ogawa Y, Kishimoto I, Nakagawa M, Sugawara A, Yoshimasa T, Mukoyama M et al (1995) Altered gene expression of natriuretic peptide receptor subtypes in the kidney of stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol Suppl 22:S177–S179PubMedGoogle Scholar
  104. 104.
    Kapasi AA, Kumar R, Pauly JR, Pandey KN (1996) Differential expression and autoradiographic localization of atrial natriuretic peptide receptor in spontaneously hypertensive and normotensive rat testes: diminution of testosterone in hypertension. Hypertension 28:847–853PubMedGoogle Scholar
  105. 105.
    Tremblay J, Hum DH, Sanchez R, Dumas P, Pravenec M, Krenova D, Kren V, Kunes J, Pausova Z, Gossard F, Hamet P (2003) TA repeat variation, Npr1 expression, and blood pressure: impact of the Ace locus. Hypertension 41:16–24PubMedGoogle Scholar
  106. 106.
    Vera N, Tse MY, Watson JD, Sarda S, Steinhelper ME, John SW, Flynn TG, Pang SC (2000) Altered expression of natriuretic peptide receptors in proANP gene disrupted mice. Cardiovasc Res 46:595–603PubMedGoogle Scholar
  107. 107.
    Yoshimoto T, Naruse K, Shionoya K, Tanaka M, Seki T, Hagiwara H, Hirose S, Kuen LS, Demura H, Naruse M, Muraki T (1996) Angiotensin converting enzyme inhibitor normalizes vascular natriuretic peptide type A receptor gene expression via bradykinin-dependent mechanism in hypertensive rats. Biochem Biophys Res Commun 218:50–53PubMedGoogle Scholar
  108. 108.
    Yoshimoto T, Naruse M, Naruse K, Fujimaki Y, Tanabe A, Muraki T, Itakura M, Hagiwara H, Hirose S, Demura H (1995) Modulation of vascular natriuretic peptide receptor gene expression in hypertensive and obese hyperglycemic rats. Endocrinology 136:2427–2434PubMedGoogle Scholar
  109. 109.
    Kumar P, Arise KK, Pandey KN (2006) Transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-A gene. Peptides 27:1762–1769PubMedGoogle Scholar
  110. 110.
    Kumar P, Bolden G, Arise KK, Krazit ST, Pandey KN (2009) Regulation of natriuretic peptide receptor-A gene expression and stimulation of its guanylate cyclase activity by transcription factor Ets-1. Biosci Rep 29:57–70PubMedGoogle Scholar
  111. 111.
    Kumar P, Pandey KN (2009) Cooperative activation of Npr1 gene transcription and expression by interaction of Ets-1 and p300. Hypertension 54:172–178PubMedGoogle Scholar
  112. 112.
    Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823PubMedGoogle Scholar
  113. 113.
    Pandey KN, Pavlou SN, Inagami T (1988) Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis. J Biol Chem 263:13406–13413PubMedGoogle Scholar
  114. 114.
    Takayanagi R, Snajdar RM, Imada T, Tamura M, Pandey KN, Misono KS, Inagami T (1987) Purification and characterization of two types of atrial natriuretic factor receptors from bovine adrenal cortex: guanylate cyclase-linked and cyclase-free receptors. Biochem Biophys Res Commun 144:244–250PubMedGoogle Scholar
  115. 115.
    Pandey KN, Nguyen HT, Garg R, Khurana ML, Fink J (2005) Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif GDAY. Biochem J 388:103–113PubMedGoogle Scholar
  116. 116.
    Rathinavelu A, Isom GE (1991) Differential internalization and processing of atrial-natriuretic-factor B and C receptor in PC12 cells. Biochem J 276(Pt 2):493–497PubMedGoogle Scholar
  117. 117.
    Koh GY, Nussenzweig DR, Okolicany J, Price DA, Maack T (1992) Dynamics of atrial natriuretic factor-guanylate cyclase receptors and receptor-ligand complexes in cultured glomerular mesangial and renomedullary interstitial cells. J Biol Chem 267:11987–11994PubMedGoogle Scholar
  118. 118.
    Pandey KN (2001) Dynamics of internalization and sequestration of guanylyl cyclase/atrial natriuretic peptide receptor-A. Can J Physiol Pharmacol 79:631–639PubMedGoogle Scholar
  119. 119.
    Anand-Srivastava MB (2000) Downregulation of atrial natriuretic peptide ANP-C receptor is associated with alterations in G-protein expression in A10 smooth muscle cells. Biochemistry 39:6503–6513PubMedGoogle Scholar
  120. 120.
    Cahill PA, Redmond EM, Keenan AK (1990) Vascular atrial natriuretic factor receptor subtypes are not independently regulated by atrial peptides. J Biol Chem 265:21896–21906PubMedGoogle Scholar
  121. 121.
    Cohen D, Koh GY, Nikonova LN, Porter JG, Maack T (1996) Molecular determinants of the clearance function of type-C receptor of natriuretic peptides. J Biol Chem 271:9863–9869PubMedGoogle Scholar
  122. 122.
    Hirata Y, Takata S, Tomita M, Takaichi S (1985) Binding, internalization, and degradation of atrial natriuretic peptide in cultured vascular smooth muscle cells of rat. Biochem Biophys Res Commun 132:976–984PubMedGoogle Scholar
  123. 123.
    Murthy KK, Thibault G, Cantin M (1989) Binding and intracellular degradation of atrial natriuretic factor by cultured vascular smooth muscle cells. Mol Cell Endocrinol 67:195–206PubMedGoogle Scholar
  124. 124.
    Napier M, Arcuri K, Vandlen R (1986) Binding and internalization of atrial natriuretic factor by high-affinity receptors in A10 smooth muscle cells. Arch Biochem Biophys 248:516–522PubMedGoogle Scholar
  125. 125.
    Nussenzveig DR, Lewicki JA, Maack T (1990) Cellular mechanisms of the clearance function of type-C receptors of atrial natriuretic factor. J Biol Chem 265:20952–20958PubMedGoogle Scholar
  126. 126.
    Pandey KN (1992) Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation. Biochem J 288:55–61PubMedGoogle Scholar
  127. 127.
    Pandey KN (2002) Intracellular trafficking and metabolic turnover of ligand-bound guanylyl cyclase/atrial natriuretic peptide receptor-A into subcellular compartments. Mol Cell Biochem 230:61–72PubMedGoogle Scholar
  128. 128.
    Delporte C, Poloczek P, Tastenoy M, Winard J, Christopher J (1992) Atrial natriuretic peptide binds to ANP-R 1 receptors in neuroblastoma cells or is degraded extracellularly at the Ser-Phe bond. Eur J Pharmacol 227:247–256PubMedGoogle Scholar
  129. 129.
    Marshall S (1985) Dual pathways for the intracellular processing of insulin: Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors. J BiolChem 260:13524–13531Google Scholar
  130. 130.
    Tietze C, Schlesinger P, Stahl P (1982) Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J Cell Biol 92:417–424PubMedGoogle Scholar
  131. 131.
    Carpenter G, Cohen S (1976) 125I-labeled human epidermal growth factor: binding, internalization, and degradation in human fibroblasts. J Cell Biol 71:159–171PubMedGoogle Scholar
  132. 132.
    Maxifeld FR, Willingram MC, Davis PJ, Pastan I (1979) Amines inhibit the clustering of alpha 2-macroglobulin and EGF on the fibroblast cell surface. Nature 227:661–663Google Scholar
  133. 133.
    Pandey KN (2005) Internalization and trafficking of guanylyl cyclase/natriuretic peptide receptor-A. Peptides 26:985–1000PubMedGoogle Scholar
  134. 134.
    Ganzalez-Noriega A, Grubb A, Talkad JT, Sly WS (1980) Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol 85:839–852Google Scholar
  135. 135.
    Van Leuvan F, Cassiman JJ, Van Den Berghe H (1980) Primary amines inhibit recycling of α2M receptors in fibroblasts. Cell 20:37–43Google Scholar
  136. 136.
    Backer JM, Kahn CR, White MF (1989) Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: studies in 2,4-dinitrophenol-treated cells. Proc Natl Acad Sci USA 86:3201–3213Google Scholar
  137. 137.
    Smith RM, Jarett L (1990) Differences in adenosine triphosphate dependency of receptor-mediated endocytosis of α2 macroglobulin and insulin correlate with separate routes of ligand–receptor complex internalization. Endocrinology 126:1551–1560PubMedGoogle Scholar
  138. 138.
    Brown MS, Anderson RGW, Goldstein JL (1983) Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32:663–667PubMedGoogle Scholar
  139. 139.
    Elster L, Hansen GH, Belhage BO, Fritschy JM, Mohler H, Schousboe A (1995) Differential distribution of GABA receptor subunits in soma and processes of cerebellular granule cells: effects of maturation and a GABA agonist. J Dev Neurosci 13:417–428Google Scholar
  140. 140.
    Barnes EM (1996) Intracellular trafficking of GABAA receptors. Int Rev Neurobiol 39:53–76PubMedGoogle Scholar
  141. 141.
    Kim HY, Sapp DE, Olsen RW, Tobin AJ (1993) GABA alters GABAA receptor mRNAs and increases ligand binding. J Neurochem 61:2334–2337PubMedGoogle Scholar
  142. 142.
    Miranda JD, Barnes EM (1997) Repression of γ-aminobutyric acid type A receptor a 1 polypeptide biosynthesis requires chronic agonist exposure. J Biol Chem 272:16288–16294PubMedGoogle Scholar
  143. 143.
    Lefkowitz RJ (1998) G protein-coupled receptors. J Biol Chem 273:18677–18680PubMedGoogle Scholar
  144. 144.
    Tsao P, Cao T, Von Zastrow M (2001) Role of endocytosis in mediating down-regulation of G-protein-coupled receptor. Trends Pharmacol Sci 22:91–96PubMedGoogle Scholar
  145. 145.
    Potter LR, Garbers DL (1994) Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. J Biol Chem 269:14636–14642PubMedGoogle Scholar
  146. 146.
    Potter LR, Hunter T (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273:15533–15539PubMedGoogle Scholar
  147. 147.
    Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK (2001) Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 217:165–172PubMedGoogle Scholar
  148. 148.
    Larose L, Rondeau JJ, Ong H, De Lean A (1992) Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine protein kinases. Evidence for receptor regulation. Mol Cell Biochem 115:203–211PubMedGoogle Scholar
  149. 149.
    Pandey KN (1989) Stimulation of protein phosphorylation by atrial natriuretic factor in plasma membranes of bovine adrenal cortical cells. Biochem Biophys Res Commun 163:988–994PubMedGoogle Scholar
  150. 150.
    Sharma RK, Duda T (1997) Plasma membrane guanylate cyclase: a multimodule transduction system. Adv Exp Med Biol 407:271–279PubMedGoogle Scholar
  151. 151.
    Brown MS, Goldstein JL (1979) Receptor-mediated endocytosis: Insights from the lipoprotein receptor system. Pro Natl Acad Sci USA 76:3330–3337Google Scholar
  152. 152.
    Chen WJ, Goldstein JL, Brown MS (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein. J Biol Chem 265:3116–3123PubMedGoogle Scholar
  153. 153.
    Berhanu P (1988) Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. J Biol Chem 263:5961–5969PubMedGoogle Scholar
  154. 154.
    Garza LA, Birnbaum MJ (2000) Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes. J Biol Chem 275:2560–2567PubMedGoogle Scholar
  155. 155.
    Paccuad JP, Siddle K, Carpentier JL (1992) Internalization of the human insulin receptor: the insulin-independent pathway. J Biol Chem 267:13101–13106Google Scholar
  156. 156.
    Ashworth R, Yu R, Nelson EJ, Dermer S, Gershengorn MC (1995) Visualization of the thyrotropin-releasing hormone receptor and its ligand during endocytosis and recycling. Proc Natl Acad Sci USA 92:512–516PubMedGoogle Scholar
  157. 157.
    Hartford J, Bridges K, Ashwell G, Klausner RD (1983) Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes. J Biol Chem 258:3191–3197Google Scholar
  158. 158.
    Dunn WA, Hubbard AL (1984) Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J Biol Chem 249:5153–5162Google Scholar
  159. 159.
    Marshall S, Green A, Olefsky JM (1981) Evidence for recycling of insulin receptors in isolated rat adipocytes. J Biol Chem 256:11464–11470PubMedGoogle Scholar
  160. 160.
    Well A, Wellsh JB, Lazer CS, Wiley HS, Rosenfeld MG (1990) Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247:962–964Google Scholar
  161. 161.
    Sorkin A, Westermark B, Heldin CH, Claesson-Welsh L (1991) Effect of receptor kinase inactivation on the rat of internalization and degradation of PDGF and the PDGF beta-receptor. J Cell Biol 112:469–478PubMedGoogle Scholar
  162. 162.
    Sorkin A, von Zastrow M (2002) Signal transduction and endocytosis close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614PubMedGoogle Scholar
  163. 163.
    Burwen SJ, Barker ME, Goldman IS, Hradek GT, Raper SE, Jones AL (1984) Transport of epidermal growth factor by rat liver: evidence for a nonlysosomal pathway. J Cell Biol 99:1259–1265PubMedGoogle Scholar
  164. 164.
    Chang T-M, Kullberg DW (1984) Diacytosis of 125I-asialoorosomucoid by rat hepatocytes: a non-lysosomal pathway insensitive to inhibition by inhibitors of ligand degradation. Biochim Biophys Acta 805:268–276PubMedGoogle Scholar
  165. 165.
    Sorkin A, Krolenkom S, Kudrjavtceva N, Lazebnik J, Teslenko L, Soderquist AM, Nikolsky N (1991) Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways. J Cell Biol 112:55–63PubMedGoogle Scholar
  166. 166.
    Haft CR, Klausner RD, Taylor SI (1994) Involvement of dileucine motifs in the internalization and degradation of the insulin receptors. J Biol Chem 269:26286–26294PubMedGoogle Scholar
  167. 167.
    Huang Z, Chen Y, Nissenson RA (1995) The cytoplasmic tail of the G-protein-coupled receptor for parathyroid hormone and parathyroid hormone-related protein contains positive and negative signals for endocytosis. J Biol Chem 270:151–156PubMedGoogle Scholar
  168. 168.
    Perez HD, Holmes R, Vilander LR, Adams RR, Manzana W, Jolley D, Andrews WH (1993) Formyl peptide receptor chimeras define domains involved in ligand binding. J Biol Chem 268:2292–2295PubMedGoogle Scholar
  169. 169.
    Sorkin A, Mohammadi M, Huang J, Slessinger J (1994) Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. J Biol Chem 269:17056–17061Google Scholar
  170. 170.
    Berhanu P, Iabrahim-Schneck H, Anderson C, Wood WM (1991) The NPEY sequence is not necessary for endocytosis and processing of insulin-receptor complexes. Mol Endocrinol 5:1827–1835PubMedGoogle Scholar
  171. 171.
    Bergeron JJM, Cruz J, Khan MN, Posher BI (1985) Uptake of insulin and other ligands in receptor rich endocytic components of target cells: the endosomal apparatus. Ann Rev Physiol 47:383–403Google Scholar
  172. 172.
    Nussenzveig DR, Heinflink M, Gershengorn MC (1993) Agonist-stimulated internalization of the thyrotropin-releasing hormone receptor is dependent on two domains in the receptor carboxyl terminus. J Biol Chem 268:2389–2392PubMedGoogle Scholar
  173. 173.
    Chen Z, Dupre DJ, Le Gouill C, Rola-Pleszczynski M, Stankova J (2002) Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D/N)PXXY motif. J Biol Chem 277:7356–7362PubMedGoogle Scholar
  174. 174.
    Bouley R, Sun TX, Chenard M, McLaughlin M, McKee M, Lin HY, Brown D, Ausiello DA (2003) Functional role of the NPxxY motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am J Physiol Cell Physiol 285:C750–C762PubMedGoogle Scholar
  175. 175.
    Li Y, Marzolo MP, van Kerkhof P, Strous GJ, Bu G (2000) The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem 275:17187–17194PubMedGoogle Scholar
  176. 176.
    Thies RS, Webster NJ, McClain DA (1990) A domain of the insulin receptor required for endocytosis in rat fibroblasts. J Biol Chem 265:10132–10137PubMedGoogle Scholar
  177. 177.
    Lazarovits J, Roth M (1988) A single amino acid change in the cytoplasmic domain allows the influenza virus hemagglutinin to be endocytosed through coated pits. Cell 53:743–752PubMedGoogle Scholar
  178. 178.
    Stolt PC, Bock HH (2006) Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell Signal 18:1560–1571PubMedGoogle Scholar
  179. 179.
    Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedGoogle Scholar
  180. 180.
    Collawn JF, Stangel M, Kuhn LA, Esekogwu V, Jing SQ, Trowbridge IS, Tainer JA (1990) Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63:1061–1072PubMedGoogle Scholar
  181. 181.
    Rajagopalan M, Neidigh JL, McClain DA (1991) Amino acid sequences Gly-Pro-Leu-Tyr and Asn-Pro-Glu-Tyr in the submembranous domain of the insulin receptor are required for normal endocytosis. J Biol Chem 266:23068–23073PubMedGoogle Scholar
  182. 182.
    Ktistakis NT, Thomas D, Roth MG (1990) Characteristics of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins. J Cell Biol 111:1393–1407PubMedGoogle Scholar
  183. 183.
    Collawn JF, Kuhn LA, Liu LF, Tainer JA, Trowbridge IS (1991) Transplanted LDL and mannose-6-phosphate receptor internalization signals promote high-efficiency endocytosis of the transferrin receptor. EMBO J 10:3247–3253PubMedGoogle Scholar
  184. 184.
    Bansal A, Gierasch LM (1991) The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 67:1195–1201PubMedGoogle Scholar
  185. 185.
    Eberle W, Sander C, Klaus W, Schmidt B, von Figura K, Peters C (1991) The essential tyrosine of the internalization signal in lysosomal acid phosphatase is part of a beta turn. Cell 67:1203–1209PubMedGoogle Scholar
  186. 186.
    Gabilondo AM, Krasel C, Lohse MJ (1996) Mutations of Tyr326 in the beta 2-adrenoceptor disrupt multiple receptor functions. Eur J Pharmacol 307:243–250PubMedGoogle Scholar
  187. 187.
    Barak LS, Tiberi M, Freedman NJ, Kwatra MM, Lefkowitz RJ, Caron MG (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem 269:2790–2795PubMedGoogle Scholar
  188. 188.
    Brackmann M, Schuchmann S, Anand R, Braunewell KH (2005) Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J Cell Sci 118:2495–2505PubMedGoogle Scholar
  189. 189.
    Somanna NK, Arise KK, Pandey KN (2007) Analysis of natriuretic peptide receptor A Internalization by ribonucleic acid interference. J Am Investig Med 55:S262Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of PhysiologyTulane University School of MedicineNew OrleansUSA

Personalised recommendations