Molecular and Cellular Biochemistry

, Volume 337, Issue 1–2, pp 167–173 | Cite as

Phospholipase Cβ4 isozyme is expressed in human, rat, and murine heart left ventricles and in HL-1 cardiomyocytes

  • David Otaegui
  • Ramón Querejeta
  • Ander Arrieta
  • Ane Lazkano
  • Ángel Bidaurrazaga
  • Jose Ramón Arriandiaga
  • Pablo Aldazabal
  • Mikel Asier Garro


Phospholipase C-β (PLCβ) isozymes (PLCβ1 and PLCβ3) have been extensively characterized in cardiac tissue, but no data are available for the PLCβ4 isozyme. In this study, PLCβ(1–4) isozymes mRNA relative expression was studied by real-time PCR (RT-PCR) in human, rat, and murine left ventricle and the presence of PLCβ4 isozyme at the protein level was confirmed by Western blotting in all species studied. Confocal microscopy experiments carried out in HL-1 cardiomyocytes revealed a sarcoplasmic subcellular distribution of PLCβ4. Although there were unexpected significant interspecies differences in the PLCβ(1–4) mRNA expression, PLCβ4 mRNA was the main transcript expressed in all left ventricles studied. Thus, whereas in human and rat left ventricles PLCβ4 > PLCβ3 > PLCβ2 > PLCβ1 mRNA pattern of expression was found, in murine left ventricle the pattern of expression was different, i.e., PLCβ4 > PLCβ1 > PLCβ3 > PLCβ2. However, results obtained in mouse HL-1 cardiomyocytes showed PLCβ3 ≈ PLCβ4 > PLCβ1 > PLCβ2 pattern of mRNA expression indicating a probable cell type specific expression of the different PLCβ isozymes in cardiomyocytes. Finally, RT-PCR experiments showed a trend, even though not significant (P = 0.067), to increase PLCβ4 mRNA levels in HL-1 cardiomyocytes after angiotensin II treatment. These results demonstrate the presence of PLCβ4 in the heart and in HL-1 cardiomyocytes showing a different species-dependent pattern of expression of the PLCβ(1–4) transcripts. We discuss the relevance of these findings in relation to the development of cardiac hypertrophy.


Phospholipase Cβ4 Human Rat Mouse Left ventricle RT-PCR Angiotensin II 



The authors would like to thank Dr Eneko Urizar for his valuable advice at the time of this manuscript preparation. We would like to thank the cardiac surgeons from Policlinica Guipuzcoa for providing the human left ventricle sample biopsy. We thank to Dr. A. Aiastui for help in immunofluorescence technique; A. Pavón and A. Dorronsoro from Inbiomed for assistance with confocal microscopy This work was supported by the Universidad del País Vasco/Euskal Herriko Unibertsitatea (1/UPV 00079.252-E-15424/2003 to M.A.G.); and the Gobierno Vasco (GV2005111012 to M.A.G.). A.L. holds a fellowship from the Diputacion Foral from Gipuzkoa.


  1. 1.
    Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380CrossRefPubMedGoogle Scholar
  2. 2.
    Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102:470–479PubMedGoogle Scholar
  3. 3.
    Clerk A, Sugden PH (1999) Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. Am J Cardiol 83:64H–69HCrossRefPubMedGoogle Scholar
  4. 4.
    Golebiewska U, Scarlata S (2008) Gαq binds two effectors separately in cells: evidence for predetermined signalling pathways. Biophys J 95:2575–2582. doi: 10.1529/biophysj.108.129353 CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor SJ, Chae HZ, Rhee SG, Exton JH (1991) Activation of β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 350:516–518. doi: 10.1038/350516a0 CrossRefPubMedGoogle Scholar
  6. 6.
    Filtz TM, Grubb DR, McLeod-Dryden TJ, Luo J, Woodcock EA (2009) Gq-inititated cardiomyocyte hypertrophy is mediated by phospholipase Cβ1b. FASEB J. doi: 10.1096/fj.09-133983
  7. 7.
    Sabri A, Steinberg SF (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251:97–101. doi: 10.1023/A:1025490017780 CrossRefPubMedGoogle Scholar
  8. 8.
    Luo DL, Gao J, Lan XM, Wang G, Wei S, Xiao RP, Han QD (2006) Role of inositol 1,4,5-trisphosphate receptors in alpha1-adrenergic receptor-induced cardiomyocyte hypertrophy. Acta Pharmacol Sin 27:895–900CrossRefPubMedGoogle Scholar
  9. 9.
    Tappia PS (2007) Phospholipid-mediated signaling systems as novel targets for treatment of heart disease. Can J Physiol Pharmacol 85:25–41. doi: 10.1139/Y06-098 CrossRefPubMedGoogle Scholar
  10. 10.
    González-Yanes C, Santos-Alvarez J, Sánchez-Margalet V (2001) Pancreastatin, a chromogranin A-derived peptide, activates Gα16 and phospholipase C-β2 by interacting with specific receptors in rat heart membranes. Cell Signal 13:43–49. doi: 10.1016/S0898-6568(00)00127-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Suh P-G, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434PubMedGoogle Scholar
  12. 12.
    Rebecchi MJ, Pentyala SN (2000) Structure, function and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335PubMedGoogle Scholar
  13. 13.
    Strassheim D, Williams CL (2000) P2Y2 purinergic and M3 muscarinic acetylcholine receptors activate different phospholipase C-beta isoforms that are uniquely susceptible to protein kinase C-dependent phosphorylation and inactivation. J Biol Chem 275:39767–39772. doi: 10.1074/jbc.M007775200 CrossRefPubMedGoogle Scholar
  14. 14.
    Wallace MA, Claro E (1993) Transmembrane signaling through phospholipase C in human cortical membranes. Neurochem Res 18:139–145CrossRefPubMedGoogle Scholar
  15. 15.
    Garro MA, López de Jesús M, Ruíz de Azúa I, Callado LF, Meana JJ, Sallés J (2001) Regulation of phospholipase Cβ activity by muscarinic acetylcholine and 5-HT2 receptors in crude and synaptosomal membranes from human cerebral cortex. Neuropharmacology 40:686–695. doi: 10.1016/S0028-3908(00)00206-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  17. 17.
    Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Kageyama K, Muramoto S, Murakami T, Okamoto H, Mochizuki N, Kitabatake A (1993) Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res 72:966–972PubMedGoogle Scholar
  18. 18.
    Dent M, Dhalla NS, Tappia PS (2004) Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 287:719–727. doi: 10.1152/ajpheart.01107.2003 CrossRefGoogle Scholar
  19. 19.
    Dent MR, Aroutiounova N, Dhalla NS, Tappia PS (2006) Losartan attenuates phospholipase C isozyme gene expression in hypertrophied hearts due to volume overload. J Cell Mol Med 10:470–479. doi: 10.1111/j.1582-4934.2006.tb00412.x CrossRefPubMedGoogle Scholar
  20. 20.
    John DY, Lee HH, Park D, Lee CW, Lee KH, Yoo OJ, Rhee SG (1993) Cloning, sequencing, purification and Gq-dependent activation of phospholipase C-β3. J Biol Chem 268:6654–6661Google Scholar
  21. 21.
    Lee CW, Lee KH, Lee SB, Park D, Rhee SG (1994) Regulation of phospholipase C-β4 by ribonucleotides and the α subunit of Gq. J Biol Chem 269:25335–25338PubMedGoogle Scholar
  22. 22.
    Lee CW, Park DJ, Lee KH, Kim CG, Rhee SG (1993) Purification, molecular cloning, and sequencing of phospholipase C-β4. J Biol Chem 268:21318–21327PubMedGoogle Scholar
  23. 23.
    Jiang H, Wu D, Simon MI (1994) Activation of phospholipase C β4 by heterotrimeric GTP-binding proteins. J Biol Chem 269:7593–7596PubMedGoogle Scholar
  24. 24.
    Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312. doi: 10.1146/annurev.biochem.70.1.281 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim D, Jun KS, Lee SB, Kang NG, Min DS, Kim YH, Ryu SH, Suh PG, Shin HS (1997) Phospholipase C isozymes selectively couple to specific receptors. Nature 389:290–293. doi: 10.1038/38508 CrossRefPubMedGoogle Scholar
  26. 26.
    Kim MJ, Min DS, Ryu SH, Suh P-G (1998) A cytosolic, Gαq- and βγ-insensitive splice variant of phospholipase C-β4. J Biol Chem 273:3618–3624CrossRefPubMedGoogle Scholar
  27. 27.
    Esler M, Kaye D (2000) Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics. Heart Fail Rev 5:17–25. doi: 10.1023/A:1009889922985 CrossRefPubMedGoogle Scholar
  28. 28.
    Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367. doi: 10.1016/S0140-6736(04)16048-0 CrossRefPubMedGoogle Scholar
  29. 29.
    Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375. doi: 10.1161/01.CIR.0000145160.04084.AC CrossRefPubMedGoogle Scholar
  30. 30.
    Hilal-Dandan R, Kanter JR, Brunton LL (2000) Characterization of G-protein signaling in ventricular myocytes from the adult mouse heart: differences from the rat. J Mol Cell Cardiol 32:1211–1221. doi: 10.1006/jmcc.2000.1156 CrossRefPubMedGoogle Scholar
  31. 31.
    Sabri A, Pak E, Alcott SA, Wilson B, Steinberg SF (2000) Coupling of endogenous α1- and β-adrenergic receptors in mouse cardiomyocytes. Circ Res 86:1047–1053PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • David Otaegui
    • 1
  • Ramón Querejeta
    • 2
  • Ander Arrieta
    • 1
  • Ane Lazkano
    • 3
  • Ángel Bidaurrazaga
    • 4
  • Jose Ramón Arriandiaga
    • 5
  • Pablo Aldazabal
    • 1
  • Mikel Asier Garro
    • 3
  1. 1.Experimental UnitHospital DonostiaSan SebastiánSpain
  2. 2.Division of CardiologyHospital DonostiaSan SebastiánSpain
  3. 3.Nursing Department IIUniversity of the Basque CountrySan SebastiánSpain
  4. 4.Department of NeuroscienceUniversity of the Basque CountryLeioaSpain
  5. 5.Division of CardiologyHospital de CrucesBilbaoSpain

Personalised recommendations