Capsaicin alleviates the imbalance in xenobiotic metabolizing enzymes and tumor markers during experimental lung tumorigenesis

  • P. Anandakumar
  • S. Kamaraj
  • S. Jagan
  • G. Ramakrishnan
  • C. Naveenkumar
  • S. Asokkumar
  • T. Devaki


Lung cancer is currently a leading cause of death all over the world. Environmental risk factors, particularly genotoxic chemicals such as polycyclic aromatic hydrocarbons (PAH), are likely to account for a much higher mortality. Xenobiotic metabolizing enzymes are potentially chief determinants in both the susceptibility to the mutagenic effects of chemical carcinogens and in the response of tumors to chemotherapy. The well-known carcinogen benzo(a)pyrene (B(a)P) of PAH family was given orally (50 mg/kg body weight) to induce lung cancer in Swiss albino mice. B(a)P induction altered the levels of cytochromes (P450, b5), activities of phase I biotransformation enzymes (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase and epoxide hydrolase), phase II enzymes (glutathione-S-transferase, UDP-glucuronyl transferase and DT-diaphorase), and the levels of serum tumor markers. Treatment with capsaicin (CAP) (10 mg/kg body weight) to the lung carcinoma mice restored back the activities of phase I and II biotransformation enzymes and the levels of tumor markers to near normalcy. The above findings were substantiated by immunoblotting and immunohistochemical analysis of cytochrome P450 1A1 (CYP1A1) in the lung tissues. Our present study unravels that CAP can effectively detoxify the carcinogens which discloses its anti-carcinogenic effect during experimental lung cancer.


Benzo(a)pyrene Lung cancer Capsaicin Phase I and II detoxification enzymes Tumor markers 



First author P. Anandakumar wishes to thank University Grants Commission, New Delhi, India for the financial assistance in the form of Junior Research fellowship. The authors S. Kamaraj and S. Jagan wishes to thank ICMR, CSIR, New Delhi, India, respectively, for the financial assistance in the form of Senior Research fellowship. The authors are thankful to Dr. John J. Stegeman, Woods Hole Oceanographic Institution, Massachusetts, and Dr. Harry V. Gelboin, National Cancer Institute, Maryland for their kind gift of CYP1A1 primary mouse monoclonal antibody.


  1. 1.
    Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173. doi: 10.1146/annurev.pharmtox.43.100901.140251 CrossRefPubMedGoogle Scholar
  2. 2.
    Srinivasan P, Suchalatha S, Babu PV, Devi RS, Narayan S, Sabitha KE, Shyamala Devi CS (2008) Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-nitroquinoline 1-oxide induced oral cancer. Chem Biol Interact 172:224–234. doi: 10.1016/j.cbi.2008.01.010 CrossRefPubMedGoogle Scholar
  3. 3.
    Selvendiran K, Banu SM, Sakthisekaran D (2005) Oral supplementation of piperine leads to altered phase II enzymes and reduced DNA damage and DNA–protein cross links in benzo(a)pyrene induced experimental lung carcinogenesis. Mol Cell Biochem 268:141–147. doi: 10.1007/s11010-005-3702-z CrossRefPubMedGoogle Scholar
  4. 4.
    Graslund A, Jernstrom B (1989) DNA–carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7,8-dihydrodiol 9,10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys 22:1–37PubMedGoogle Scholar
  5. 5.
    Shinozaki R, Inoue S, Choi KS (1998) Flow cytometric measurement of benzo[a]pyrene-diol-epoxide-DNA adducts in normal human peripheral lymphocytes and cultured human lung cancer cells. Cytometry 31:300–306. doi: 10.1002/(SICI)1097-0320(19980401)31:4<300::AID-CYTO10>3.0.CO;2-U CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang H, Spitz MR, Tomlinson GE, Schabath MB, Mina JD, Wu X (2002) Modification of lung cancer susceptibility by green tea extract as measured by the comet assay. Cancer Detect Prev 26:411–418. doi: 10.1016/S0361-090X(02)00127-7 CrossRefPubMedGoogle Scholar
  7. 7.
    Miller CH, Zhang Z, Hamilton SM, Teel RW (1993) Effects of capsaicin on liver microsomal metabolism of the tobacco-specific nitrosamine NNK. Cancer Lett 75:45–52. doi: 10.1016/0304-3835(93)90206-O CrossRefPubMedGoogle Scholar
  8. 8.
    Surh YJ, Lee SS (1995) Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci 56:1845–1855. doi: 10.1016/0024-3205(95)00159-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Chowdhury B, Mukhopadhyay S, Bhattacharayay D, De AK (1996) Capsaicin, a unique anti-oxidant, anti-inflammatory, analgesic compound with antifungal activity against dermatophytes. Med Sci Res 24:669–670Google Scholar
  10. 10.
    Teel RW (1997) Effects of capsaicin on rat liver S9-mediated metabolism and DNA binding of aflatoxin. Nutr Cancer 15:27–32CrossRefGoogle Scholar
  11. 11.
    Tanaka T, Kohno H, Sakata K, Yamada Y, Hirose Y, Sugie S, Mori H (2002) Modifying effects of dietary capsaicin and rotenone on 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. Carcinogenesis 23:1361–1367. doi: 10.1093/carcin/23.8.1361 CrossRefPubMedGoogle Scholar
  12. 12.
    Kogure K, Goto S, Nishimura M, Yasumoto M, Abe K, Ohiwa C, Sassa H, Kusumi T, Terada H (2002) Mechanism of potent antiperoxidative effect of capsaicin. Biochim Biophys Acta 1573:84–92PubMedGoogle Scholar
  13. 13.
    Anandakumar P, Jagan S, Kamaraj S, Ramakrishnan G, Clara JB, Pathitha D, Kavitha T, Devaki T (2009) Ameliorating effect of capsaicin on alternations in lipid metabolism during mice lung carcinoma. Arch Pharm Res 32:229–234. doi: 10.1007/s12272-009-1140-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Devaki T (2009) Lysosomal abnormalities during experimental lung carcinogenesis—defensive role of capsaicin. Fundam Clin Pharmacol 23:97–103. doi: 10.1111/j.1472-8206.2008.00637.x CrossRefPubMedGoogle Scholar
  15. 15.
    Anandakumar P, Jagan S, Kamaraj S, Ramakrishnan G, Vinodhkumar R, Devaki T (2008) Beneficial influence of capsaicin on lipid peroxidation, membrane-bound enzymes and glycoprotein profile during experimental lung carcinogenesis. J Pharm Pharmacol 60:803–808. doi: 10.1211/jpp.60.6.0017 CrossRefPubMedGoogle Scholar
  16. 16.
    Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Vinodhkumar R, Devaki T (2008) Capsaicin modulates pulmonary antioxidant defense system during benzo(a)pyrene-induced lung cancer in Swiss albino mice. Phytother Res 22:529–533. doi: 10.1002/ptr.2393 CrossRefPubMedGoogle Scholar
  17. 17.
    Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Vinodhkumar R, Devaki T (2008) Stabilization of pulmonary mitochondrial enzyme system by capsaicin during benzo(a)pyrene induced experimental lung cancer. Biomed Pharmacother 62:390–394. doi: 10.1016/j.biopha.2007.09.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Hanioka N, Jinno H, Nishimura T, Ando M (1997) Changes in cytochrome P450 enzymes by 1,1-dichloroethylene in rat liver and kidney. Arch Toxicol 72:9–16. doi: 10.1007/s002040050462 CrossRefPubMedGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NH, Farr AL, Randall RI (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  20. 20.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385PubMedGoogle Scholar
  21. 21.
    Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem 237:2652–2660PubMedGoogle Scholar
  22. 22.
    Strittmatter P, Velick SF (1956) A microsomal cytochrome reductase specific for diphosphopyridine nucleotide. J Biol Chem 221:277–286PubMedGoogle Scholar
  23. 23.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  24. 24.
    Bock KW, Burchell B, Ditton GJ et al (1983) UDP-glucuronosyl transferase activities: guidelines for consistent interim terminology and assay condition. Biochem Pharmacol 32:953–955. doi: 10.1016/0006-2952(83)90610-X CrossRefPubMedGoogle Scholar
  25. 25.
    Ernest L, Danielson L, Ljunggren M (1982) DT-diaphorase-purification from the soluble fraction of rat liver cytoplasm. Biochem Biophys Acta 58:171–188Google Scholar
  26. 26.
    Talalay P, Benson AM (1982) Elevation of quinone reductase activity by anticarcinogenic antioxidants. Adv Enzyme Regul 20:287–300. doi: 10.1016/0065-2571(82)90021-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Ramakrishnan G, Augustine TA, Jagan S, Vinodhkumar R, Devaki T (2007) Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Exp Oncol 29:39–44PubMedGoogle Scholar
  28. 28.
    Selvendiran K, Thirunavukkarasu C, Singh JPC, Padmavathi R, Sakthisekaran D (2005) Chemopreventive effect of piperine on mitochondrial TCA cycle and phase-I and glutathione-metabolizing enzymes in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Mol Cell Biochem 271:101–106. doi: 10.1007/s11010-005-5615-2 CrossRefPubMedGoogle Scholar
  29. 29.
    Szeliga J, Dipple A (1998) DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides. Chem Res Toxicol 11:1–11. doi: 10.1021/tx970142f CrossRefPubMedGoogle Scholar
  30. 30.
    De AK, Agarwal K, Mukherjee A, Sengupta D (1995) Inhibition by capsaicin against cyclophosphamide-induced clastogenicity and DNA damage in mice. Mutat Res 335:253–258PubMedGoogle Scholar
  31. 31.
    Modly CE, Das M, Don PS, Marcelo CL, Mukhtar H, Bickers DR (1986) Capsaicin as an in vitro inhibitor of benzo(a)pyrene metabolism and its DNA binding in human and murine keratinocytes. Drug Metab Dispos 14:413–416PubMedGoogle Scholar
  32. 32.
    Premalatha B, Sachdanandam P (2000) Modulating role of Semecarpus anacardium L. nut milk extract on Aflatoxin B1 biotransformation. Pharmacol Res 41:19–24. doi: 10.1006/phrs.1999.0544 CrossRefPubMedGoogle Scholar
  33. 33.
    Song LL, Kosmeder JW, Lee SK, Gerhauser C, Lantvit D, Moon RC, Moriarty RM, Pezzuto JM (1999) Cancer chemopreventive activity mediated by 4′-bromoflavone, a potent inducer of phase II detoxification enzymes. Cancer Res 59(3):578–585PubMedGoogle Scholar
  34. 34.
    Manson MM, Ball HW, Barrett MC, Clark HL, Judah DJ, Williamson G, Neal GE (1997) Mechanism of action of dietary chemoprotective agents in rat liver: induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism. Carcinogenesis 18:1729–1738. doi: 10.1093/carcin/18.9.1729 CrossRefPubMedGoogle Scholar
  35. 35.
    King C, Tang W, Ngui J, Tephly T, Braun M (2001) Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac. Toxicol Sci 61(1):49–53CrossRefPubMedGoogle Scholar
  36. 36.
    Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20:187–210. doi: 10.1016/j.tiv.2005.06.048 CrossRefPubMedGoogle Scholar
  37. 37.
    Begleiter A, Leith MK, Curphey TJ, Doherty GP (1997) Induction of DT diaphorase in cancer chemoprevention and chemotherapy. Oncol Res 9:371–382PubMedGoogle Scholar
  38. 38.
    Sivaramakrishnan V, Shilpa PNM, Praveen Kumar VR, Niranjali Devaraj S (2008) Attenuation of N-nitrosodiethylamine-induced hepatocellular carcinogenesis by a novel flavonol-Morin. Chem Biol Interact 171:79–88. doi: 10.1016/j.cbi.2007.09.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Sakao Y, Tomimitsu S, Takeda Y, Natsuaki M, Itoh T (2004) Carcinoembryonic antigen as a predictive factor for postoperative tumor relapse in early-stage lung adenocarcinoma. Eur J Cardiothorac Surg 25:520–522. doi: 10.1016/j.ejcts.2004.01.029 CrossRefPubMedGoogle Scholar
  40. 40.
    Devipriya S, Ganapathy V, Shyamaladevi CS (2006) Suppression of tumor growth and invasion in 9,10 dimethyl benz(a)anthracene induced mammary carcinoma by the plant bioflavonoid quercetin. Chem Biol Interact 162:106–113. doi: 10.1016/j.cbi.2006.04.002 CrossRefPubMedGoogle Scholar
  41. 41.
    Pujol JL, Boher JM, Grenier J, Quantin X (2001) Cyfra 21-1, neuron specific enolase and prognosis of non-small cell lung cancer: prospective study in 621 patients. Lung Cancer 31:221–231. doi: 10.1016/S0169-5002(00)00186-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Quoix E, Purohit A, Faller-Beau M, Moreau L, Oster JP, Pauli G (2000) Comparative prognostic value of lactate dehydrogenase and neuron-specific enolase in small-cell lung cancer patients treated with platinum-based chemotherapy. Lung Cancer 30:127–134. doi: 10.1016/S0169-5002(00)00131-8 CrossRefPubMedGoogle Scholar
  43. 43.
    Lamy P, Grenier J, Kramar A, Pujol JL (2000) Pro-gastrin-releasing peptide, neuron specific enolase and chromogranin A as serum markers of small cell lung cancer. Lung Cancer 29:197–203. doi: 10.1016/S0169-5002(00)00113-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • P. Anandakumar
    • 1
  • S. Kamaraj
    • 1
  • S. Jagan
    • 1
  • G. Ramakrishnan
    • 1
  • C. Naveenkumar
    • 1
  • S. Asokkumar
    • 1
  • T. Devaki
    • 1
  1. 1.Department of BiochemistryUniversity of MadrasChennaiIndia

Personalised recommendations