Advertisement

De-ubiquitylation is the most critical step in the ubiquitin-mediated homeostatic control of the NF-κB/IKK basal activity

  • Linda Palma
  • Rita Crinelli
  • Marzia Bianchi
  • Mauro Magnani
Article

Abstract

The role of ubiquitylation in signal-induced activation of nuclear factor -κB (NF-κB) has been well established, while its involvement in maintaining NF-κB basal activity is less certain. Recent evidences demonstrate that in unstimulated cells, NF-κB homeostasis is actually the result of opposing forces: pro-activating activity of the IκB Kinase (IKK) and inhibitory activity of the Inhibitor of -κB (IκB) proteins. It is well known that endogenous de-ubiquitylating mechanisms are less effective on Ub motifs containing UbG76A. Here, we show that overexpression of a ubiquitin (Ub) G76A mutant leads to persistent activation of the IKK/NF-κB pathway in the absence of extra-cellular stimuli. In contrast, no effects on NF-κB activation were observed upon expression of UbK48R and UbK63R mutants, which are known to impair elongation of Lys48- and Lys63-linked poly-ubiquitin chains, respectively. Overall, these findings indicate that under basal conditions, the rate of de-ubiquitylation, rather than that of substrate ubiquitylation, is critical for the maintenance of appropriate levels of IKK/NF-κB activity.

Keywords

Ubiquitin Nuclear factor -κB IκB Kinase De-ubiquitylation 

Notes

Funding

This study was supported by COFIN-MIUR PRIN 2006 [prot. 2006058482_001] granted to M. Magnani.

References

  1. 1.
    Ciechanover A, Schwartz AL (2002) Ubiquitin-mediated degradation of cellular proteins in health and disease. Hepatology 35:3–6. doi: 10.1053/jhep.2002.30316 CrossRefPubMedGoogle Scholar
  2. 2.
    Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187. doi: 10.1038/35056572 CrossRefPubMedGoogle Scholar
  3. 3.
    Liu YC (2004) Ubiquitin ligases and the immune response. Annu Rev Immunol 22:81–127. doi: 10.1146/annurev.immunol.22.012703.104813 CrossRefPubMedGoogle Scholar
  4. 4.
    Sun L, Chen ZJ (2004) The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16:119–126. doi: 10.1016/j.ceb.2004.02.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, Skowyra D, Gygi SP, Goldberg AL (2007) Certain pairs of ubiquitin-conjugating enzymes (E2 s) and ubiquitin-protein ligases (E3 s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 282:17375–17386. doi: 10.1074/jbc.M609659200 CrossRefPubMedGoogle Scholar
  6. 6.
    Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186. doi: 10.1111/j.0105-2896.2006.00375.x CrossRefPubMedGoogle Scholar
  7. 7.
    Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288. doi: 10.1016/j.it.2004.03.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260. doi: 10.1146/annurev.immunol.16.1.225 CrossRefPubMedGoogle Scholar
  9. 9.
    Tam WF, Lee LH, Davis L, Sen R (2000) Cytoplasmic sequestration of rel proteins by IkappaBalpha requires CRM1-dependent nuclear export. Mol Cell Biol 20:2269–2284. doi: 10.1128/MCB.20.6.2269-2284.2000 CrossRefPubMedGoogle Scholar
  10. 10.
    DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554. doi: 10.1038/41493 CrossRefPubMedGoogle Scholar
  11. 11.
    Pomerantz JL, Baltimore D (2002) Two pathways to NF-kappaB. Mol Cell 10:693–695. doi: 10.1016/S1097-2765(02)00697-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224. doi: 10.1101/gad.1228704 CrossRefPubMedGoogle Scholar
  13. 13.
    Orian A, Gonen H, Bercovich B, Fajerman I, Eytan E, Israel A, Mercurio F, Iwai K, Schwartz AL, Ciechanover A (2000) SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. EMBO J 19:2580–2591. doi: 10.1093/emboj/19.11.2580 CrossRefPubMedGoogle Scholar
  14. 14.
    Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–S96. doi: 10.1016/S0092-8674(02)00703-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401–409. doi: 10.1016/S1097-2765(01)00187-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361. doi: 10.1016/S0092-8674(00)00126-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095. doi: 10.1038/ni1255 CrossRefPubMedGoogle Scholar
  18. 18.
    Carter RS, Pennington KN, Arrate P, Oltz EM, Ballard DW (2005) Site-specific monoubiquitination of IkappaB kinase IKKbeta regulates its phosphorylation and persistent activation. J Biol Chem 280:43272–43279. doi: 10.1074/jbc.M508656200 CrossRefPubMedGoogle Scholar
  19. 19.
    Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284:309–313. doi: 10.1126/science.284.5412.309 CrossRefPubMedGoogle Scholar
  20. 20.
    Schomer-Miller B, Higashimoto T, Lee YK, Zandi E (2006) Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta. J Biol Chem 281:15268–15276. doi: 10.1074/jbc.M513793200 CrossRefPubMedGoogle Scholar
  21. 21.
    Scharschmidt E, Wegener E, Heissmeyer V, Rao A, Krappmann D (2004) Degradation of Bcl10 induced by T-cell activation negatively regulates NF-kappa B signaling. Mol Cell Biol 24:3860–3873. doi: 10.1128/MCB.24.9.3860-3873.2004 CrossRefPubMedGoogle Scholar
  22. 22.
    Li X, Yang Y, Ashwell JD (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416:345–347. doi: 10.1038/416345a CrossRefPubMedGoogle Scholar
  23. 23.
    Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12:1413–1426. doi: 10.1016/S1097-2765(03)00490-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699. doi: 10.1038/nature02794 CrossRefPubMedGoogle Scholar
  25. 25.
    Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424:801–805. doi: 10.1038/nature01802 CrossRefPubMedGoogle Scholar
  26. 26.
    Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424:797–801. doi: 10.1038/nature01811 CrossRefPubMedGoogle Scholar
  27. 27.
    Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424:793–796. doi: 10.1038/nature01803 CrossRefPubMedGoogle Scholar
  28. 28.
    Enesa K, Zakkar M, Chaudhury H, Luong lA, Rawlinson L, Mason JC, Haskard DO, Dean JL, Evans PC (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 283:7036–7045. doi: 10.1074/jbc.M708690200 CrossRefPubMedGoogle Scholar
  29. 29.
    Hodgins RR, Ellison KS, Ellison MJ (1992) Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J Biol Chem 267:8807–8812PubMedGoogle Scholar
  30. 30.
    Wilkinson KD, Tashayev VL, O’Connor LB, Larsen CN, Kasperek E, Pickart CM (1995) Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34:14535–14546. doi: 10.1021/bi00044a032 CrossRefPubMedGoogle Scholar
  31. 31.
    Ravid T, Hochstrasser M (2007) Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat Cell Biol 9:422–427. doi: 10.1038/ncb1558 CrossRefPubMedGoogle Scholar
  32. 32.
    Crinelli R, Bianchi M, Menotta M, Carloni E, Giacomini E, Pennati M, Magnani M (2008) Ubiquitin over-expression promotes E6AP autodegradation and reactivation of the p53/MDM2 pathway in HeLa cells. Mol Cell Biochem 318:129–145. doi: 10.1007/s11010-008-9864-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi: 10.1093/nar/29.9.e45 CrossRefPubMedGoogle Scholar
  34. 34.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  35. 35.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401. doi: 10.1038/338394a0 CrossRefPubMedGoogle Scholar
  37. 37.
    Shi CS, Kehrl JH (2003) Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 278:15429–15434. doi: 10.1074/jbc.M211796200 CrossRefPubMedGoogle Scholar
  38. 38.
    Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH (2007) Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science 317:675–678. doi: 10.1126/science.1142953 CrossRefPubMedGoogle Scholar
  39. 39.
    Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334PubMedGoogle Scholar
  40. 40.
    Zhou A, Scoggin S, Gaynor RB, Williams NS (2003) Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 22:2054–2064. doi: 10.1038/sj.onc.1206262 CrossRefPubMedGoogle Scholar
  41. 41.
    Yamamoto K, Arakawa T, Ueda N, Yamamoto S (1995) Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 270:31315–31320. doi: 10.1074/jbc.270.52.31315 CrossRefPubMedGoogle Scholar
  42. 42.
    Buss H, Dorrie A, Schmitz ML, Hoffmann E, Resch K, Kracht M (2004) Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 279:55633–55643. doi: 10.1074/jbc.M409825200 CrossRefPubMedGoogle Scholar
  43. 43.
    Saccani S, Pantano S, Natoli G (2001) Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193:1351–1359. doi: 10.1084/jem.193.12.1351 CrossRefPubMedGoogle Scholar
  44. 44.
    Krappmann D, Wulczyn FG, Scheidereit C (1996) Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J 15:6716–6726PubMedGoogle Scholar
  45. 45.
    Pando MP, Verma IM (2000) Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha. J Biol Chem 275:21278–21286. doi: 10.1074/jbc.M002532200 CrossRefPubMedGoogle Scholar
  46. 46.
    O’Dea EL, Barken D, Peralta RQ, Tran KT, Werner SL, Kearns JD, Levchenko A, Hoffmann A (2007) A homeostatic model of IkappaB metabolism to control constitutive NF-kappaB activity. Mol Syst Biol 3:111. doi: 10.1038/msb4100148 PubMedGoogle Scholar
  47. 47.
    Mathes E, O’Dea EL, Hoffmann A, Ghosh G (2008) NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J 27:1357–1367. doi: 10.1038/emboj.2008.73 CrossRefPubMedGoogle Scholar
  48. 48.
    Sebban H, Yamaoka S, Courtois G (2006) Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol 16:569–577. doi: 10.1016/j.tcb.2006.09.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Ellison MJ, Hochstrasser M (1991) Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function. J Biol Chem 266:21150–21157PubMedGoogle Scholar
  50. 50.
    Strayhorn WD, Wadzinski BE (2002) A novel in vitro assay for deubiquitination of I kappa B alpha. Arch Biochem Biophys 400:76–84. doi: 10.1006/abbi.2002.2760 CrossRefPubMedGoogle Scholar
  51. 51.
    Singhal S, Taylor MC, Baker RT (2008) Deubiquitylating enzymes and disease. BMC Biochem 9(Suppl 1):S3. doi: 10.1186/1471-2091-9-S1-S3 CrossRefPubMedGoogle Scholar
  52. 52.
    Chauhan D, Bianchi G, Anderson KC (2008) Targeting the UPS as therapy in multiple myeloma. BMC Biochem 9(Suppl 1):S1. doi: 10.1186/1471-2091-9-S1-S1 CrossRefPubMedGoogle Scholar
  53. 53.
    Corn PG (2007) Role of the ubiquitin proteasome system in renal cell carcinoma. BMC Biochem 8(Suppl 1):S4. doi: 10.1186/1471-2091-8-S1-S4 CrossRefPubMedGoogle Scholar
  54. 54.
    Sato K, Rajendra E, Ohta T (2008) The UPS: a promising target for breast cancer treatment. BMC Biochem 9(Suppl 1):S2. doi: 10.1186/1471-2091-9-S1-S2 CrossRefPubMedGoogle Scholar
  55. 55.
    Voutsadakis IA (2007) Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med 11:252–285. doi: 10.1111/j.1582-4934.2007.00032.x CrossRefPubMedGoogle Scholar
  56. 56.
    Naugler WE, Karin M (2008) NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26. doi: 10.1016/j.gde.2008.01.020 CrossRefPubMedGoogle Scholar
  57. 57.
    Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ, Budunova IV (2002) The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells. J Cell Sci 115:141–151PubMedGoogle Scholar
  58. 58.
    Yang J, Richmond A (2001) Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 61:4901–4909PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Linda Palma
    • 1
  • Rita Crinelli
    • 1
  • Marzia Bianchi
    • 1
  • Mauro Magnani
    • 1
  1. 1.Dipartimento di Scienze BiomolecolariUniversità degli Studi di Urbino “Carlo Bo”UrbinoItaly

Personalised recommendations