COX-1 is coupled with mPGES-1 and ABCC4 in human cervix cancer cells

  • Hana Radilova
  • Antonin Libra
  • Sarka Holasova
  • Martina Safarova
  • Alena Viskova
  • Filip Kunc
  • Martin Buncek


Cyclooxygenases are key enzymes in the arachidonic acid metabolism. Their unstable intermediate, prostaglandin H2, is further metabolized to bioactive lipids by various downstream enzymes. In this study, utilizing short hairpin RNAs, we prepared a cell line of human cervix carcinoma with stable down-regulated cyclooxygenase-1 (COX-1) to assess the impact of COX-1 reduction on the downstream enzymes. We found a significant microsomal prostaglandin E synthase-1 (mPGES-1) suppression. In addition, mRNA expression of multidrug resistance protein 4 (MRP4, ABCC4), supposed to take part in antiviral and anticancer drug transport from cells, was up-regulated after COX-1 down-regulation. Our findings indicate that mPGES-1, believed to be coexpressed preferentially with cyclooxygenase-2, may be coupled to COX-1. ABCC4 up-regulation further supports the assumption of its involvement in prostanoid transport.


Cyclooxygenase Prostaglandin E synthase mPGES-1 Multidrug resistance protein ABCC4 shRNA 





Microsomal prostaglandin E synthase


Multidrug resistance protein 4


ATP-binding cassette, sub-family C, member 4


Nonsteroidal anti-inflammatory drugs


Arachidonic acid




Prostaglandin E synthase


Cytosolic prostaglandin E synthase


Short hairpin RNA



This study was supported by the grant NR8760-4/2006 from the Ministry of Health, Czech Republic and GENERI BIOTECH s.r.o.


  1. 1.
    Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–235PubMedGoogle Scholar
  2. 2.
    Dubois RN, Abramson SB, Crofford L et al (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedGoogle Scholar
  3. 3.
    Ueno N, Takegoshi Y, Kamei D et al (2005) Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem Biophys Res Commun 338:70–76. doi: 10.1016/j.bbrc.2005.08.152 CrossRefPubMedGoogle Scholar
  4. 4.
    Yu Y, Fan J, Hui Y et al (2007) Targeted cyclooxygenase gene (ptgs) exchange reveals discriminant isoform functionality. J Biol Chem 282:1498–1506. doi: 10.1074/jbc.M609930200 CrossRefPubMedGoogle Scholar
  5. 5.
    Jakobsson PJ, Thoren S, Morgenstern R et al (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci USA 96:7220–7225. doi: 10.1073/pnas.96.13.7220 CrossRefPubMedGoogle Scholar
  6. 6.
    Tanikawa N, Ohmiya Y, Ohkubo H et al (2002) Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem Biophys Res Commun 291:884–889. doi: 10.1006/bbrc.2002.6531 CrossRefPubMedGoogle Scholar
  7. 7.
    Tanioka T, Nakatani Y, Semmyo N et al (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 275:32775–32782. doi: 10.1074/jbc.M003504200 CrossRefPubMedGoogle Scholar
  8. 8.
    Murakami M, Nakatani Y, Tanioka T et al (2002) Prostaglandin E synthase. Prostaglandins Other Lipid Mediat 68–69:383–399. doi: 10.1016/S0090-6980(02)00043-6 CrossRefPubMedGoogle Scholar
  9. 9.
    Murakami M, Naraba H, Tanioka T et al (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 275:32783–32792. doi: 10.1074/jbc.M003505200 CrossRefPubMedGoogle Scholar
  10. 10.
    Boulet L, Ouellet M, Bateman KP et al (2004) Deletion of microsomal prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal PGE2 production and alters the gastric prostanoid profile. J Biol Chem 279:23229–23237. doi: 10.1074/jbc.M400443200 CrossRefPubMedGoogle Scholar
  11. 11.
    Francois H, Facemire C, Kumar A et al (2007) Role of microsomal prostaglandin E synthase 1 in the kidney. J Am Soc Nephrol 18:1466–1475. doi: 10.1681/ASN.2006040343 CrossRefPubMedGoogle Scholar
  12. 12.
    Chandrasekharan S, Foley NA, Jania L et al (2005) Coupling of COX-1 to mPGES1 for prostaglandin E2 biosynthesis in the murine mammary gland. J Lipid Res 46:2636–2648. doi: 10.1194/jlr.M500213-JLR200 CrossRefPubMedGoogle Scholar
  13. 13.
    Schneider A, Zhang Y, Zhang M et al (2004) Membrane-associated PGE synthase-1 (mPGES-1) is coexpressed with both COX-1 and COX-2 in the kidney. Kidney Int 65:1205–1213. doi: 10.1111/j.1523-1755.2004.00493.x CrossRefPubMedGoogle Scholar
  14. 14.
    Murakami M, Nakashima K, Kamei D et al (2003) Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem 278:37937–37947. doi: 10.1074/jbc.M305108200 CrossRefPubMedGoogle Scholar
  15. 15.
    Han R, Smith TJ (2002) Cytoplasmic prostaglandin E2 synthase is dominantly expressed in cultured KAT-50 thyrocytes, cells that express constitutive prostaglandin-endoperoxide H synthase-2. Basis for low protaglandin E2 production. J Biol Chem 277:36897–36903. doi: 10.1074/jbc.M206949200 CrossRefPubMedGoogle Scholar
  16. 16.
    Reid G, Wielinga P, Zelcer N et al (2003) The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA 100:9244–9249. doi: 10.1073/pnas.1033060100 CrossRefPubMedGoogle Scholar
  17. 17.
    Rius M, Thon WF, Keppler D et al (2005) Prostanoid transport by multidrug resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract. J Urol 174:2409–2414. doi: 10.1097/01.ju.0000180411.03808.cb CrossRefPubMedGoogle Scholar
  18. 18.
    Bai J, Lai L, Yeo HC et al (2004) Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol 36:247–257. doi: 10.1016/S1357-2725(03)00236-X CrossRefPubMedGoogle Scholar
  19. 19.
    Schuetz JD, Connelly MC, Sun D et al (1999) MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 5:1048–1051. doi: 10.1038/12487 CrossRefPubMedGoogle Scholar
  20. 20.
    Chen ZS, Lee K, Kruh GD (2001) Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 276:33747–33754. doi: 10.1074/jbc.M104833200 CrossRefPubMedGoogle Scholar
  21. 21.
    Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11Google Scholar
  22. 22.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi: 10.1093/nar/29.9.e45 CrossRefPubMedGoogle Scholar
  23. 23.
    Degousee N, Angoulvant D, Fazel S et al (2006) c-Jun N-terminal kinase-mediated stabilization of microsomal prostaglandin E2 synthase-1 mRNA regulates delayed microsomal prostaglandin E2 synthase-1 expression and prostaglandin E2 biosynthesis by cardiomyocytes. J Biol Chem 281:16443–16452. doi: 10.1074/jbc.M602815200 CrossRefPubMedGoogle Scholar
  24. 24.
    Chandrasekharan NV, Simmons DL (2004) The cyclooxygenases. Genome Biol 5:241. doi: 10.1186/gb-2004-5-9-241 CrossRefPubMedGoogle Scholar
  25. 25.
    Pebernard S, Iggo RD (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72:103–111. doi: 10.1111/j.1432-0436.2004.07202001.x CrossRefPubMedGoogle Scholar
  26. 26.
    Sledz CA, Holko M, de Veer MJ et al (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839. doi: 10.1038/ncb1038 CrossRefPubMedGoogle Scholar
  27. 27.
    Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182. doi: 10.1146/annurev.biochem.69.1.145 CrossRefPubMedGoogle Scholar
  28. 28.
    Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59:207–224. doi: 10.1124/pr.59.3.1 CrossRefPubMedGoogle Scholar
  29. 29.
    Yang T (2007) Microsomal prostaglandin E synthase-1 and blood pressure regulation. Kidney Int 72:274–278. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  30. 30.
    Ivanov AI, Romanovsky AA (2004) Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front Biosci 9:1977–1993. doi: 10.2741/1383 CrossRefPubMedGoogle Scholar
  31. 31.
    Lin ZP, Zhu YL, Johnson DR et al (2008) Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 73:243–251. doi: 10.1124/mol.107.039594 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou SF, Wang LL, Di YM et al (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039. doi: 10.2174/092986708785132870 CrossRefPubMedGoogle Scholar
  33. 33.
    Kirtikara K, Morham SG, Raghow R et al (1998) Compensatory prostaglandin E2 biosynthesis in cyclooxygenase 1 or 2 null cells. J Exp Med 187:517–523. doi: 10.1084/jem.187.4.517 CrossRefPubMedGoogle Scholar
  34. 34.
    Tanaka A, Hase S, Miyazawa T et al (2002) Up-regulation of cyclooxygenase-2 by inhibition of cyclooxygenase-1: a key to nonsteroidal anti-inflammatory drug-induced intestinal damage. J Pharmacol Exp Ther 300:754–761. doi: 10.1124/jpet.300.3.754 CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang J, Goorha S, Raghow R et al (2002) The tissue-specific, compensatory expression of cyclooxygenase-1 and -2 in transgenic mice. Prostaglandins Other Lipid Mediat 67:121–135. doi: 10.1016/S0090-6980(01)00177-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Gradilone A, Pulcinelli FM, Lotti LV et al (2007) Celecoxib induces MRP-4 in lung cancer cells: therapeutic implications. J Clin Oncol 25:4318–4320. doi: 10.1200/JCO.2007.12.2945 Author reply 4320CrossRefPubMedGoogle Scholar
  37. 37.
    Bock JM, Menon SG, Sinclair LL et al (2007) Celecoxib toxicity is cell cycle phase specific. Cancer Res 67:3801–3808. doi: 10.1158/0008-5472.CAN-06-3780 CrossRefPubMedGoogle Scholar
  38. 38.
    Warner TD, Mitchell JA (2003) Nonsteroidal antiinflammatory drugs inhibiting prostanoid efflux: as easy as ABC? Proc Natl Acad Sci USA 100:9108–9110. doi: 10.1073/pnas.1733826100 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Hana Radilova
    • 1
    • 2
  • Antonin Libra
    • 1
  • Sarka Holasova
    • 1
  • Martina Safarova
    • 1
  • Alena Viskova
    • 1
    • 3
  • Filip Kunc
    • 1
    • 3
  • Martin Buncek
    • 1
  1. 1.GENERI BIOTECH s.r.oHradec KraloveCzech Republic
  2. 2.Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KraloveCharles University in PraguePragueCzech Republic
  3. 3.Department of Medical Biology and Genetics, Faculty of Medicine in Hradec KraloveCharles University in PraguePragueCzech Republic

Personalised recommendations