Molecular and Cellular Biochemistry

, Volume 328, Issue 1–2, pp 217–224 | Cite as

Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells

  • V. Srinivasan
  • U. Tatu
  • V. Mohan
  • M. Balasubramanyam


Augmentation of hexosamine biosynthetic pathway (HBP) and endoplasmic reticulum (ER) stress were independently related to be the underlying causes of insulin resistance. We hypothesized that there might be a molecular convergence of activated HBP and ER stress pathways leading to insulin resistance. Augmentation of HBP in L6 skeletal muscle cells either by pharmacological (glucosamine) or physiological (high-glucose) means, resulted in increased protein expression of ER chaperones (viz., Grp78, Calreticulin, and Calnexin), UDP-GlcNAc levels and impaired insulin-stimulated glucose uptake. Cells silenced for O-glycosyl transferase (OGT) showed improved insulin-stimulated glucose uptake (P < 0.05) but without any effect on ER chaperone upregulation. While cells treated with either glucosamine or high-glucose exhibited increased JNK activity, silencing of OGT resulted in inhibition of JNK and normalization of glucose uptake. Our study for the first time, demonstrates a molecular convergence of O-glycosylation processes and ER stress signals at the cross-road of insulin resistance in skeletal muscle.


Insulin resistance Diabetes HBP ER stress UDP-GlcNAc OGT RNAi JNK Glucose uptake Skeletal muscle 



Authors acknowledge the financial assistance from DBT, ICMR and DST-FIST, Government of India. Senior Research Fellow award from CSIR to Mr. Vedantham Srinivasan is also acknowledged.

Supplementary material

11010_2009_92_MOESM1_ESM.pdf (33 kb)
(PDF 33 kb)


  1. 1.
    Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system: role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266:4706–4712PubMedGoogle Scholar
  2. 2.
    Herbert L, McClain DA (1996) Overexpression of glutamine: fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 97:1235–1241. doi: 10.1172/JCI118538 CrossRefGoogle Scholar
  3. 3.
    Buse MG (2006) Hexosamine. Insulin resistance and the complications of diabetes: current status. Am J Physiol 290:E1–E8Google Scholar
  4. 4.
    Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461. doi: 10.1126/science.1103160 PubMedCrossRefGoogle Scholar
  5. 5.
    Sundar Rajan S, Srinivasan V, Balasubramanyam M et al (2007) Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res 125:411–424PubMedGoogle Scholar
  6. 6.
    Werstuck GH, Khan MI, Femia G et al (2006) Glucosamine induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model. Diabetes 55:93–101. doi: 10.2337/diabetes.55.01.06.db05-0633 PubMedCrossRefGoogle Scholar
  7. 7.
    Yki-Järvinen H, Daniels MC, Virkamäki A et al (1996) Increased glutamine: fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 45:302–307. doi: 10.2337/diabetes.45.3.302 PubMedCrossRefGoogle Scholar
  8. 8.
    Wang H, Kouri H, Wollheim CB (2005) ER stress and SREBP-1 activation are implicated in ß-cell glucolipotoxicity. J Cell Sci 118:3905–3915. doi: 10.1242/jcs.02513 PubMedCrossRefGoogle Scholar
  9. 9.
    Daniels MC, Ciaraldi TP, Nikoulina S et al (1996) Glutamine: fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells: relationship to glucose disposal rate in control and non-insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin. J Clin Invest 97:1235–1241. doi: 10.1172/JCI118538 PubMedCrossRefGoogle Scholar
  10. 10.
    Span PN, Pouwels MJ, Olthaar AJ et al (2001) Assay for hexosamine pathway intermediates (uridine diphosphate-N-acetyl amino sugars) in small samples of human muscle tissue. Clin Chem 47:944–946PubMedGoogle Scholar
  11. 11.
    Clark SF, Moler JC, James DE (2000) Release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance. J Biol Chem 275:3819–3826. doi: 10.1074/jbc.275.6.3819 PubMedCrossRefGoogle Scholar
  12. 12.
    DeFronzo RA (1988) The triumvirate: ß-cell, muscle, liver. Collusion responsible for NIDDM. Diabetes 37:667–687PubMedGoogle Scholar
  13. 13.
    Baron AD, Brechtel G, Wallace P et al (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 255:E769–E774PubMedGoogle Scholar
  14. 14.
    Srinivasan V, Sandhya N, Sampathkumar R et al (2007) Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with Type 2 diabetes: interrelationships with hyperglycemia and oxidative stress. Clin Biochem 40:952–957. doi: 10.1016/j.clinbiochem.2007.05.002 PubMedCrossRefGoogle Scholar
  15. 15.
    Robinson KA, Ball LE, Buse MG (2007) Reduction of O-GlcNAc protein modification does not prevent insulin resistance in 3T3–L1 adipocytes. Am J Physiol Endocrinol Metab 292:E884–E890. doi: 10.1152/ajpendo.00569.2006 PubMedCrossRefGoogle Scholar
  16. 16.
    Parker GJ, Lund KC, Taylor RP et al (2003) Insulin resistance of glycogen synthase mediated by O-linked N-acetylglucosamine. J Biol Chem 278:10022–10027. doi: 10.1074/jbc.M207787200 PubMedCrossRefGoogle Scholar
  17. 17.
    Arias EB, Kim J, Cartee GD (2004) Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 53:921–930. doi: 10.2337/diabetes.53.4.921 PubMedCrossRefGoogle Scholar
  18. 18.
    Park SY, Ryu J, Lee W (2005) O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med 37:220–229PubMedGoogle Scholar
  19. 19.
    McClain DA, Lubas WA, Cooksey RC et al (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci USA 99:10695–10699. doi: 10.1073/pnas.152346899 PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall S, Okuyama R, Rumberger JM (2005) Turnover and characterization of UDP-N-acetylglucosaminyl transferase in a stably transfected HeLa cell line. Biochem Biophys Res Commun 332:263–270. doi: 10.1016/j.bbrc.2005.04.122 PubMedCrossRefGoogle Scholar
  21. 21.
    Werstuck GH, Mohammad I et al (2006) Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model. Diabetes 55:93–101. doi: 10.2337/diabetes.55.01.06.db05-0633 PubMedCrossRefGoogle Scholar
  22. 22.
    Patti ME, Virkamäki A, Landaker EJ et al (1999) Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 48:1562–1571. doi: 10.2337/diabetes.48.8.1562 PubMedCrossRefGoogle Scholar
  23. 23.
    Vosseller K, Wells L, Lane MD et al (2002) Elevated nucleoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes. Proc Natl Acad Sci USA 99:5313–5318. doi: 10.1073/pnas.072072399 PubMedCrossRefGoogle Scholar
  24. 24.
    Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocrinol Rev 29:42–61. doi: 10.1210/er.2007-0015 CrossRefGoogle Scholar
  25. 25.
    Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378. doi: 10.1126/science.1058714 PubMedCrossRefGoogle Scholar
  26. 26.
    Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022. doi: 10.1038/nature05815 PubMedCrossRefGoogle Scholar
  27. 27.
    Kaneto H (2005) The JNK pathway as a therapeutic target for diabetes. Expert Opin Ther Targets 9:581–592. doi: 10.1517/14728222.9.3.581 PubMedCrossRefGoogle Scholar
  28. 28.
    Kaneto H et al (2001) Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 276:1099–1104. doi: 10.1074/jbc.M104115200 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • V. Srinivasan
    • 1
  • U. Tatu
    • 2
  • V. Mohan
    • 1
  • M. Balasubramanyam
    • 1
  1. 1.Department of Cell and Molecular BiologyMadras Diabetes Research Foundation, Dr. Mohan’s Diabetes Specialities CenterChennaiIndia
  2. 2.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations