Skip to main content
Log in

Specific knockdown of δ-sarcoglycan gene in C2C12 in vitro causes post-translational loss of other sarcoglycans without mechanical stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The precise role of δ-sarcoglycan (SG) that is constitutively expressed in skeletal muscle cells and may serve for maintaining the sarcolemmal integrity has not been identified. The δ-SG protein is at first among SG complex. To specifically identify the role in C2C12 cells during the myogenesis, we screened several RNA interference (RNAi) candidates at first, and knocked down both levels of the mRNA and protein, employing adenovirus-mediated RNAi. We found no morphological alteration at both myoblast and myotube stages by suppression of δ-SG. The specific knockdown of δ-SG accompanied a concomitant decrease of α-, β-, and γ-SGs preserving normal levels of each transcript. As for the localization, α-, β-, and γ-SGs were weakly stained on the cell membrane in δ-SG knockdown cells, whereas each SG in control cell was localized both on the cell membrane and myoplasm abundantly. This enhanced post-translational loss would represent similitude of the progression of cardiomuscular diseases in vitro. Different from cardiac muscle cells, skeletal muscle cell culture without muscle contraction may imply that mechanical stress per se is not primarily involved in the progression of limb-girdle muscular dystrophy. Furthermore, we have observed translocation of calpain-2 to cell membrane in δ-SG knockdown cells, suggesting that Ca2+-sensitive proteases, calpains closely take part in post-translational proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bushby KM (1999) The limb-girdle muscular dystrophies-multiple genes, multiple mechanisms. Hum Mol Genet 8:1875–1882. doi:10.1093/hmg/8.10.1875

    Article  PubMed  CAS  Google Scholar 

  2. Homburger F (1972) Disease models in Syrian hamsters. Prog Exp Tumor Res 16:69–86

    PubMed  CAS  Google Scholar 

  3. Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233. doi:10.1038/415227a

    Article  PubMed  CAS  Google Scholar 

  4. Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12:349–361. doi:10.1016/S0959-437X(02)00309-X

    Article  PubMed  CAS  Google Scholar 

  5. Nigro V, Okazaki Y, Belsito A, Piluso G, Matsuda Y, Politano L, Nigro G, Ventura C, Abbondanza C, Molinari AM, Acampora D, Nishimura M, Hayashizaki Y, Puca GA (1997) Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 6:601–607. doi:10.1093/hmg/6.4.601

    Article  PubMed  CAS  Google Scholar 

  6. Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 94:13873–13878. doi:10.1073/pnas.94.25.13873

    Article  PubMed  CAS  Google Scholar 

  7. Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L, Bowles NE, Towbin JA (2000) Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 106:655–662. doi:10.1172/JCI9224

    Article  PubMed  CAS  Google Scholar 

  8. Kawada T, Nakazawa M, Nakauchi S, Yamazaki K, Shimamoto R, Urabe M, Nakata J, Hemmi C, Masui F, Nakajima T, Suzuki J, Monahan J, Sato H, Masaki T, Ozawa K, Toyo-oka T (2002) Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters. Proc Natl Acad Sci USA 99:901–906. doi:10.1073/pnas.022641799

    Article  PubMed  CAS  Google Scholar 

  9. Toyo-oka T, Kawada T, Nakata J, Xie H, Urabe M, Masui F, Ebisawa T, Tezuka A, Iwasawa K, Nakajima T, Uehara Y, Kumagai H, Kostin S, Schaper J, Nakazawa M, Ozawa K (2004) Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction. Proc Natl Acad Sci USA 101:7381–7385. doi:10.1073/pnas.0401944101

    Article  PubMed  Google Scholar 

  10. Kawada T, Masui F, Tezuka A, Ebisawa T, Kumagai H, Nakazawa M, Toyo-oka T (2005) A novel scheme of dystrophin disruption for the progression of advanced heart failure. Biochim Biophys Acta 1751:73–81

    PubMed  CAS  Google Scholar 

  11. Kawada T, Nakatsuru Y, Sakamoto A, Koizumi T, Shin WS, Okai-Matsuo Y, Suzuki J, Uehara Y, Nakazawa M, Sato H, Ishikawa T, Toyo-oka T (1999) Strain- and age-dependent loss of sarcoglycan complex in cardiomyopathic hamster hearts and its re-expression by delta-sarcoglycan gene transfer in vivo. FEBS Lett 458:405–408. doi:10.1016/S0014-5793(99)01164-3

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi M, Tanonaka K, Yoshida H, Koshimizu M, Daicho T, Oikawa R, Takeo S (2006) Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J Cardiovasc Pharmacol 47:413–421

    PubMed  CAS  Google Scholar 

  13. Gastaldello S, D’Angelo S, Franzoso S, Fanin M, Angelini C, Betto R, Sandona D (2008) Inhibition of proteasome activity promotes the correct localization of disease-causing alpha-sarcoglycan mutants in HEK-293 cells constitutively expressing beta-, gamma-, and delta-sarcoglycan. Am J Pathol 173:170–181. doi:10.2353/ajpath.2008.071146

    Article  PubMed  CAS  Google Scholar 

  14. Bonuccelli G, Sotgia F, Capozza F, Gazzerro E, Minetti C, Lisanti MP (2007) Localized treatment with a novel FDA-approved proteasome inhibitor blocks the degradation of dystrophin and dystrophin-associated proteins in mdx mice. Cell Cycle 6:1242–1248

    PubMed  CAS  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  16. Liu LA, Engvall E (1999) Sarcoglycan isoforms in skeletal muscle. J Biol Chem 274:38171–38176. doi:10.1074/jbc.274.53.38171

    Article  PubMed  CAS  Google Scholar 

  17. Shi W, Chen Z, Schottenfeld J, Stahl RC, Kunkel LM, Chan YM (2004) Specific assembly pathway of sarcoglycans is dependent on beta- and delta-sarcoglycan. Muscle Nerve 29:409–419. doi:10.1002/mus.10566

    Article  PubMed  CAS  Google Scholar 

  18. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  19. Honda M, Masui F, Kanzawa N, Tsuchiya T, Toyo-oka T (2008) Specific knockdown of m-calpain blocks myogenesis with cDNA deduced from the corresponding RNAi. Am J Physiol Cell Physiol 294:C957–C965. doi:10.1152/ajpcell.00505.2007

    Article  PubMed  CAS  Google Scholar 

  20. Chang HS, Lin CH, Chen YC, Yu WC (2004) Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown. Am J Pathol 165:1535–1541

    PubMed  CAS  Google Scholar 

  21. Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9:1539–1544. doi:10.1038/nm964

    Article  PubMed  CAS  Google Scholar 

  22. Peng S, York JP, Zhang P (2006) A transgenic approach for RNA interference-based genetic screening in mice. Proc Natl Acad Sci USA 103:2252–2256. doi:10.1073/pnas.0511034103

    Article  PubMed  CAS  Google Scholar 

  23. Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA 99:1443–1448. doi:10.1073/pnas.032652399

    Article  PubMed  CAS  Google Scholar 

  24. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 532:227–230. doi:10.1016/S0014-5793(02)03680-3

    Article  PubMed  CAS  Google Scholar 

  25. Trulzsch B, Davies K, Wood M (2004) Survival of motor neuron gene downregulation by RNAi: towards a cell culture model of spinal muscular atrophy. Brain Res Mol Brain Res 120:145–150. doi:10.1016/j.molbrainres.2003.10.015

    Article  PubMed  CAS  Google Scholar 

  26. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  27. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823. doi:10.1083/jcb.122.4.809

    Article  PubMed  CAS  Google Scholar 

  28. Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP (1997) Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem 272:31221–31224. doi:10.1074/jbc.272.50.31221

    Article  PubMed  CAS  Google Scholar 

  29. Sampaolesi M, Yoshida T, Iwata Y, Hanada H, Shigekawa M (2001) Stretch-induced cell damage in sarcoglycan-deficient myotubes. Pflugers Arch 442:161–170. doi:10.1007/s004240100516

    Article  PubMed  CAS  Google Scholar 

  30. Dudley RW, Danialou G, Govindaraju K, Lands L, Eidelman DE, Petrof BJ (2006) Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. Am J Pathol 168:1276–1287. doi:10.2353/ajpath.2006.050683

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura TY, Iwata Y, Sampaolesi M, Hanada H, Saito N, Artman M, Coetzee WA, Shigekawa M (2001) Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. Am J Physiol Cell Physiol 281:C690–C699

    PubMed  CAS  Google Scholar 

  32. Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567:723–735. doi:10.1113/jphysiol.2005.091694

    Article  PubMed  CAS  Google Scholar 

  33. Han R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL, Campbell KP (2007) Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest 117:1805–1813. doi:10.1172/JCI30848

    Article  PubMed  CAS  Google Scholar 

  34. Lynch GS, Rafael JA, Chamberlain JS, Faulkner JA (2000) Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice. Am J Physiol Cell Physiol 279:C1290–C1294

    PubMed  CAS  Google Scholar 

  35. Matsuda R, Nishikawa A, Tanaka H (1995) Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem 118:959–964

    PubMed  CAS  Google Scholar 

  36. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967. doi:10.1083/jcb.200301101

    Article  PubMed  CAS  Google Scholar 

  37. Iwata Y, Katanosaka Y, Shijun Z, Kobayashi Y, Hanada H, Shigekawa M, Wakabayashi S (2005) Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells. Biochem Pharmacol 70:740–751. doi:10.1016/j.bcp.2005.05.034

    Article  PubMed  CAS  Google Scholar 

  38. Turner PR, Fong PY, Denetclaw WF, Steinhardt RA (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115:1701–1712. doi:10.1083/jcb.115.6.1701

    Article  PubMed  CAS  Google Scholar 

  39. Bartoli M, Bourg N, Stockholm D, Raynaud F, Delevacque A, Han Y, Borel P, Seddik K, Armande N, Richard I (2006) A mouse model for monitoring calpain activity under physiological and pathological conditions. J Biol Chem 281:39672–39680. doi:10.1074/jbc.M608803200

    Article  PubMed  CAS  Google Scholar 

  40. Yoshida H, Takahashi M, Koshimizu M, Tanonaka K, Oikawa R, Toyo-oka T, Takeo S (2003) Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction. Cardiovasc Res 59:419–427. doi:10.1016/S0008-6363(03)00385-7

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi M, Tanonaka K, Yoshida H, Oikawa R, Koshimizu M, Daicho T, Toyo-oka T, Takeo S (2005) Effects of ACE inhibitor and AT1 blocker on dystrophin-related proteins and calpain in failing heart. Cardiovasc Res 65:356–365. doi:10.1016/j.cardiores.2004.09.022

    Article  PubMed  CAS  Google Scholar 

  42. Cheng L, Guo XF, Yang XY, Chong M, Cheng J, Li G, Gui YH, Lu DR (2006) Delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochem Biophys Res Commun 344:1290–1299. doi:10.1016/j.bbrc.2006.03.234

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiyo Honda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, M., Hosoda, M., Kanzawa, N. et al. Specific knockdown of δ-sarcoglycan gene in C2C12 in vitro causes post-translational loss of other sarcoglycans without mechanical stress. Mol Cell Biochem 323, 149–159 (2009). https://doi.org/10.1007/s11010-008-9975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9975-2

Keywords

Navigation