Molecular and Cellular Biochemistry

, Volume 322, Issue 1–2, pp 171–178 | Cite as

Activation of ERK5 in angiotensin II-induced hypertrophy of human aortic smooth muscle cells

  • Zhuo Zhao
  • Jing Geng
  • Zhiming Ge
  • Wei Wang
  • Yun Zhang
  • Weiqiang Kang


Extracellular signal-regulated kinase 5 (ERK5), a recently discovered mitogen-activated protein kinase (MAPK), plays a key role in the development and pathogenesis of cardiovascular disease. In order to clarify the pathophysiological significance of ERK5 in vascular remodeling, we investigated ERK5 phosphorylation in hypertrophy of human aortic smooth muscle cells (HASMCs) induced by angiotensin II (Ang II). The AT1 receptor was involved in Ang II-induced ERK5 activity. Hypertrophy was detected by the measurement of protein synthesis with [3H]-Leu incorporation in cultured HASMCs. Ang II rapidly induced phosphorylation of ERK5 at Thr218/Tyr220 residues in a time- and dose-dependent manner. Activation of myocyte enhancer factor-2C (MEF2C) by ERK5 was inhibited by PD98059. Transfecting HASMCs with small interfering RNA (siRNA) to silence ERK5 inhibited Ang II-induced cell hypertrophy. Thus, ERK5 phosphorylation contributes to MEF2C activation and subsequent HASMC hypertrophy induced by Ang II, for a novel molecular mechanism in cardiovascular diseases induced by Ang II.


ERK5 Hypertrophy Human aortic smooth muscle cells Angiotensin II 



We gratefully acknowledge the technical assistance from Dr. Jinbo Feng, and Dr. Guanghui Liu in histopathological and molecular biological analysis. This study was supported by the National 973 Basic Research Program of China (No.2007CB512003) and Natural Fund of Shandong Province (Y2007C012).


  1. 1.
    Abe J, Kusuhara M, Ulevitch RJ et al (1996) Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 271:16586–16590. doi: 10.1074/jbc.271.28.16586 PubMedCrossRefGoogle Scholar
  2. 2.
    Zhou G, Bao ZQ, Dixon JE (1995) Components of a new human protein kinase signal transduction pathway. J Biol Chem 270:12665–12669PubMedGoogle Scholar
  3. 3.
    Yan C, Luo H, Lee JD et al (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem 276:10870–10878. doi: 10.1074/jbc.M009286200 PubMedCrossRefGoogle Scholar
  4. 4.
    Wang X, Merritt AJ, Seyfried J et al (2005) Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Mol Cell Biol 25:336–345. doi: 10.1128/MCB.25.1.336-345.2005 PubMedCrossRefGoogle Scholar
  5. 5.
    Regan CP, Li W, Boucher DM et al (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci USA 99:9248–9253. doi: 10.1073/pnas.142293999 PubMedCrossRefGoogle Scholar
  6. 6.
    Sohn SJ, Sarvis BK, Cado D et al (2002) ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem 277:43344–43351. doi: 10.1074/jbc.M207573200 PubMedCrossRefGoogle Scholar
  7. 7.
    Yan L, Carr J, Ashby PR, Murry-Tait V et al (2003) Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol 3:11. doi: 10.1186/1471-213X-3-11 PubMedCrossRefGoogle Scholar
  8. 8.
    Wang X, Tournier C (2006) Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal 18:753–760. doi: 10.1016/j.cellsig.2005.11.003 PubMedCrossRefGoogle Scholar
  9. 9.
    Rovida E, Navari N, Caligiuri A et al (2008) ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells. J Hepatol 48:107–115. doi: 10.1016/j.jhep.2007.08.010 PubMedCrossRefGoogle Scholar
  10. 10.
    Sharma G, Goalstone ML (2007) Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells. Biochem Biophys Res Commun 354:1078–1083. doi: 10.1016/j.bbrc.2007.01.102 PubMedCrossRefGoogle Scholar
  11. 11.
    Mulloy R, Salinas S, Philips A et al (2003) Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 22:5387–5398. doi: 10.1038/sj.onc.1206839 PubMedCrossRefGoogle Scholar
  12. 12.
    Dong F, Gutkind JS, Larner AC (2001) Granulocyte colony-stimulating factor induces ERK5 activation, which is differentially regulated by protein-tyrosine kinases and protein kinase C. Regulation of cell proliferation and survival. J Biol Chem 276:10811–10816. doi: 10.1074/jbc.M008748200 PubMedCrossRefGoogle Scholar
  13. 13.
    Kato Y, Tapping RI, Huang S et al (1998) Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395:713–716. doi: 10.1038/27234 PubMedCrossRefGoogle Scholar
  14. 14.
    Dinev D, Jordan BW, Neufeld B et al (2001) Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep 2:829–834. doi: 10.1093/embo-reports/kve177 PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao M, Liu Y, Bao M et al (2002) Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. Arch Biochem Biophys 400:199–207. doi: 10.1016/S0003-9861(02)00028-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Kato Y, Kravchenko VV, Tapping RI et al (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 16:7054–7066. doi: 10.1093/emboj/16.23.7054 PubMedCrossRefGoogle Scholar
  17. 17.
    Diaz-Meco MT, Moscat J (2001) MEK5, a new target of the atypical protein kinase C isoforms in mitogenic signaling. Mol Cell Biol 21:1218–1227. doi: 10.1128/MCB.21.4.1218-1227.2001 PubMedCrossRefGoogle Scholar
  18. 18.
    Dzau VJ, Lopez-Ilasaca M (2005) Searching for transcriptional regulators of Ang II-induced vascular pathology. J Clin Invest 115:2319–2322. doi: 10.1172/JCI26384 PubMedCrossRefGoogle Scholar
  19. 19.
    Brasier AR, Jamaluddin M, Han Y et al (2000) Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem 212:155–169. doi: 10.1023/A:1007133710837 PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshida T, Hoofnagle MH, Owens GK (2004) Myocardin and Prx1 contribute to angiotensin II-induced expression of smooth muscle alpha-actin. Circ Res 94:1075–1082. doi: 10.1161/01.RES.0000125622.46280.95 PubMedCrossRefGoogle Scholar
  21. 21.
    Zhan Y, Brown C, Maynard E et al (2005) Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest 115:2508–2516. doi: 10.1172/JCI24403 PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi Y, Watanabe H, Murakami M et al (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195:287–296. doi: 10.1016/j.atherosclerosis.2006.12.033 PubMedCrossRefGoogle Scholar
  23. 23.
    Hou Y, Okamoto C, Okada K et al (2007) c-Myc is essential for urokinase plasminogen activator expression on hypoxia-induced vascular smooth muscle cells. Cardiovasc Res 75:186–194. doi: 10.1016/j.cardiores.2007.02.033 PubMedCrossRefGoogle Scholar
  24. 24.
    Wong C, Jin ZG (2005) Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem 280:33262–33269. doi: 10.1074/jbc.M503198200 PubMedCrossRefGoogle Scholar
  25. 25.
    Touyz RM, Berry C (2002) Recent advances in angiotensin II signaling. Braz J Med Biol Res 35:1001–1015. doi: 10.1590/S0100-879X2002000900001 PubMedCrossRefGoogle Scholar
  26. 26.
    Yoon SC, Ahn YM, Jun SJ et al (2005) Region-specific phosphorylation of ERK5-MEF2C in the rat frontal cortex and hippocampus after electroconvulsive shock. Prog Neuropsychopharmacol Biol Psychiatry 29:749–753. doi: 10.1016/j.pnpbp.2005.04.006 PubMedCrossRefGoogle Scholar
  27. 27.
    Shishido T, Woo CH, Ding B et al (2008) Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction. Circ Res 102:1416–1425. doi: 10.1161/CIRCRESAHA.107.168138 PubMedCrossRefGoogle Scholar
  28. 28.
    Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40. doi: 10.1038/35065000 PubMedCrossRefGoogle Scholar
  29. 29.
    Hayashi M, Kim SW, Imanaka-Yoshida K et al (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148PubMedGoogle Scholar
  30. 30.
    Cavanaugh JE, Ham J, Hetman M et al (2001) Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci 21:434–443PubMedGoogle Scholar
  31. 31.
    Fujii Y, Matsuda S, Takayama G et al (2008) ERK5 is involved in TCR-induced apoptosis through the modification of Nur77. Genes Cells 13:411–419. doi: 10.1111/j.1365-2443.2008.01177.x PubMedCrossRefGoogle Scholar
  32. 32.
    Sharma G, Goalstone ML (2005) Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Mol Cell Endocrinol 245:93–104. doi: 10.1016/j.mce.2005.10.027 PubMedCrossRefGoogle Scholar
  33. 33.
    Ushio-Fukai M, Zuo L, Ikeda S et al (2005) CAbl tyrosine kinase mediates reactive oxygen species- and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy. Circ Res 97:829–836. doi: 10.1161/01.RES.0000185322.46009.F5 PubMedCrossRefGoogle Scholar
  34. 34.
    Han J, Jiang Y, Li Z et al (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299. doi: 10.1038/386296a0 PubMedCrossRefGoogle Scholar
  35. 35.
    Morimoto H, Kondoh K, Nishimoto S et al (2007) Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol Chem 282:35449–35456. doi: 10.1074/jbc.M704079200 PubMedCrossRefGoogle Scholar
  36. 36.
    Mody N, Leitch J, Armstrong C et al (2001) Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett 502:21–24. doi: 10.1016/S0014-5793(01)02651-5 PubMedCrossRefGoogle Scholar
  37. 37.
    Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786. doi: 10.1038/sj.embor.7400755 PubMedCrossRefGoogle Scholar
  38. 38.
    Benedetto BD, Hitz C, Hölter SM et al (2007) Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain. J Comp Neurol 500:542–556. doi: 10.1002/cne.21186 PubMedCrossRefGoogle Scholar
  39. 39.
    Chen HI, Hsieh NK, Chang HR et al (2008) Arterial haemodynamics on ventricular hypertrophy in rats with simulated aortic stiffness. Pflugers Arch 455:595–606. doi: 10.1007/s00424-007-0320-5 PubMedCrossRefGoogle Scholar
  40. 40.
    Daugherty A, Cassis L (2004) Angiotensin II-mediated development of vascular diseases. Trends Cardiovasc Med 14:117–120. doi: 10.1016/j.tcm.2004.01.002 PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi N, Saito Y, Kuwahara K et al (2005) Hypertrophic responses to cardiotrophin-1 are not mediated by STAT3, but via a MEK5-ERK5 pathway in cultured cardiomyocytes. J Mol Cell Cardiol 38:185–192. doi: 10.1016/j.yjmcc.2004.10.016 PubMedCrossRefGoogle Scholar
  42. 42.
    Shin SY, Yang JM, Choo SM et al (2008) System-level investigation into the regulatory mechanism of the calcineurin/NFAT signaling pathway. Cell Signal 20:1117–1124. doi: 10.1016/j.cellsig.2008.01.023 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Zhuo Zhao
    • 1
    • 3
  • Jing Geng
    • 1
  • Zhiming Ge
    • 1
  • Wei Wang
    • 2
  • Yun Zhang
    • 1
  • Weiqiang Kang
    • 1
  1. 1.The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of HealthShandong University, Qilu HospitalJinanPeople’s Republic of China
  2. 2.Department of CardiologyShandong Provincial Chest HospitalJinanPeople’s Republic of China
  3. 3.Department of CardiologyJinan Central HospitalJinanChina

Personalised recommendations