Molecular and Cellular Biochemistry

, Volume 322, Issue 1–2, pp 103–112 | Cite as

Differential roles of MAPKs and MSK1 signalling pathways in the regulation of c-Jun during phenylephrine-induced cardiac myocyte hypertrophy

  • Thomais Markou
  • Danuta Cieslak
  • Catherine Gaitanaki
  • Antigone Lazou


Gq-protein-coupled receptor (GqPCR) signalling is associated with the induction of cardiac myocyte hypertrophy, which is characterized by an increase in expression of immediate early genes via activation of pre-existing transcription factors. Here, we explore the role of MSK1 and MAPK signalling pathways in the regulation of the immediate early gene c-jun. The results provide further support for the role of MSK1 in cardiac myocyte hypertrophy and indicate that PE activates distinct signalling mechanisms which culminate with a complex activation of c-jun. ERK1/2 and JNKs are the principal kinases responsible for phosphorylation of c-Jun, whereas c-jun mRNA and protein up-regulation by PE is mediated by multiple signalling pathways that include MSK1, ERK1/2, p38-MAPK and JNKs. These signalling mechanisms seem to be critical to the phenotypic changes of cardiac myocytes in response to hypertrophic stimulation.


Adult cardiac myocytes Hypertrophy Immediate early gene MSK1 MAP kinases c-Jun 



This work was partially supported by a grant from Empirikion Foundation.


  1. 1.
    Sugden PH, Clerk A (1998) Cellular mechanisms of cardiac hypertrophy. J Mol Med 76:725–742. doi: 10.1007/s001090050275 PubMedCrossRefGoogle Scholar
  2. 2.
    Lazou A, Sugden PH, Clerk A (1998) Activation of Mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J 332:459–465PubMedGoogle Scholar
  3. 3.
    Bogoyevitch M, Glennon P, Andersson M et al (1994) Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 269:1110–1119PubMedGoogle Scholar
  4. 4.
    Clerk A, Michael A, Sugden PH (1998) Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal ventricular myocytes by the G-protein-coupled receptor agonists endothelin-1 and phenylephrine; a role in cardiac myocyte hypertrophy? J Cell Biol 142:523–535. doi: 10.1083/jcb.142.2.523 PubMedCrossRefGoogle Scholar
  5. 5.
    Ramirez M, Sah V, Zhao X et al (1997) The MEKK-JNK pathway is stimulated by α1-adrenergic receptor and Ras activation is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem 272:14057–14061. doi: 10.1074/jbc.272.22.14057 PubMedCrossRefGoogle Scholar
  6. 6.
    Markou T, Lazou A (2002) Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein coupled receptor agonists requires both extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. Biochem J 365:757–763PubMedGoogle Scholar
  7. 7.
    Deak M, Clifton A, Lucqocq J et al (1998) Mitogen-and stress-activated kinase 1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441. doi: 10.1093/emboj/17.15.4426 PubMedCrossRefGoogle Scholar
  8. 8.
    Markou T, Hadzopoulou-Cladaras M, Lazou A (2004) Phenylephrine induces activation of CREB in adult rat cardiac myocytes through MSK1 and PKA signaling pathways. J Mol Cell Cardiol 37:1001–1011. doi: 10.1016/j.yjmcc.2004.08.002 PubMedCrossRefGoogle Scholar
  9. 9.
    Raivich G, Behrens A (2006) Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 78:347–363. doi: 10.1016/j.pneurobio.2006.03.006 PubMedCrossRefGoogle Scholar
  10. 10.
    Mechta-Grigoriou F, Gerald D, Yaniv M (2001) The mammalian Jun proteins: redundancy and specificity. Oncogene 20:2378–2389. doi: 10.1038/sj.onc.1204381 PubMedCrossRefGoogle Scholar
  11. 11.
    Minden A, Lin A, Smeal T et al (1994) c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol 14:6683–6688PubMedGoogle Scholar
  12. 12.
    Dignam J, Lebwvitz R, Roeder R (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489. doi: 10.1093/nar/11.5.1475 PubMedCrossRefGoogle Scholar
  13. 13.
    Clerk A, Cullingford TE, Fuller SJ et al (2007) Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol 212:311–322. doi: 10.1002/jcp.21094 PubMedCrossRefGoogle Scholar
  14. 14.
    Pulverer BJ, Kyriakis M, Avruch J et al (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674. doi: 10.1038/353670a0 PubMedCrossRefGoogle Scholar
  15. 15.
    Nadruz W Jr, Kobarg CB, Kobarg J et al (2004) c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart. Am J Physiol 286(2):H760–H767Google Scholar
  16. 16.
    Yue TL, Gu JL, Wang C et al (2000) Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiac myocyte hypertrophy. J Biol Chem 275:37895–37901. doi: 10.1074/jbc.M007037200 PubMedCrossRefGoogle Scholar
  17. 17.
    Clerk A, Aggeli I-K, Stathopoulou K et al (2006) Peptide growth factors signal differentially through protein kinase C to extracellular signal-regulated kinase in neonatal cardiac myocytes. Cell Signal 18:225–235. doi: 10.1016/j.cellsig.2005.04.005 PubMedCrossRefGoogle Scholar
  18. 18.
    Sugden PH (2001) Signaling pathways in cardiac myocyte hypertrophy. Ann Med 33:611–622PubMedGoogle Scholar
  19. 19.
    Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352PubMedGoogle Scholar
  20. 20.
    Gillespie-Brown J, Fuller SJ, Bogoyevitch MA et al (1995) The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiac myocytes. J Biol Chem 270:28092–28096. doi: 10.1074/jbc.270.47.28092 PubMedCrossRefGoogle Scholar
  21. 21.
    Omura T, Yoshiyama M, Yoshida K et al (2002) Dominant negative mutant of c-Jun inhibits cardiac myocyte hypertrophy induced by endothelin 1 and phenylephrine. Hypertension 39:81–86. doi: 10.1161/hy0102.100783 PubMedCrossRefGoogle Scholar
  22. 22.
    Clerk A, Kemp TJ, Harrison JG et al (2002) Up-regulation of c-jun mRNA in cardiac myocytes requires the extracellular signal-regulated kinase cascade, but c-Jun N-terminal kinases are required for efficient up-regulation of c-Jun protein. Biochem J 368:101–110. doi: 10.1042/BJ20021083 PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu F, Zhang Y, Bode AM et al (2004) Involvement of ERKs and mitogen- and stress-activated protein kinase in UVC-induced phosphorylation of ATF2 in JB6 cells. Carcinogenesis 25:1847–1852. doi: 10.1093/carcin/bgh202 PubMedCrossRefGoogle Scholar
  24. 24.
    Aggeli I-K, Gaitanaki C, Beis I (2006) Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced up-regulation of heme oxygenase-1 mRNA in H9c2 cells. Cell Signal 18:1801–1812. doi: 10.1016/j.cellsig.2006.02.001 PubMedCrossRefGoogle Scholar
  25. 25.
    Harrison JG, Sugden PH, Clerk A (2004) Endothelin-1 promotes phosphorylation of CREB transcription factor in primary cultures of neonatal rat cardiac myocytes: implications for the regulation of c-jun expression. Biochim Biophys Acta 1644:17–25. doi: 10.1016/j.bbamcr.2003.10.008 PubMedCrossRefGoogle Scholar
  26. 26.
    Marinissen MJ, Chiariello M, Pallane M et al (1999) A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38 s, and extracellular signal-regulated kinase 5. Mol Cell Biol 19:4289–4301PubMedGoogle Scholar
  27. 27.
    Spruill LS, McDermott PJ (2006) Regulation of c-jun mRNA expression in adult cardiocytes by MAP kinase interacting kinase-1 (MNK1). FASEB J 20:2133–2135. doi: 10.1096/fj.06-6245fje PubMedCrossRefGoogle Scholar
  28. 28.
    Waskiewicz AJ, Flynn A, Proud CG et al (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:909–920. doi: 10.1093/emboj/16.8.1909 CrossRefGoogle Scholar
  29. 29.
    Fuchs SY, Fried VA, Ronai Z (1998) Stress-activated kinases regulate protein stability. Oncogene 1:1483–1490. doi: 10.1038/sj.onc.1202184 CrossRefGoogle Scholar
  30. 30.
    Davies SP, Reddy H, Caivano M et al (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105. doi: 10.1042/0264-6021:3510095 PubMedCrossRefGoogle Scholar
  31. 31.
    Bain J, Plater L, Elliott M et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315. doi: 10.1042/BJ20070797 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Thomais Markou
    • 1
  • Danuta Cieslak
    • 1
  • Catherine Gaitanaki
    • 2
  • Antigone Lazou
    • 1
  1. 1.Laboratory of Animal Physiology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Animal and Human Physiology, School of BiologyUniversity of AthensAthensGreece

Personalised recommendations