Advertisement

Mipu1, a novel rat zinc-finger protein, inhibits transcriptional activities of AP-1 and SRE in mitogen-activated protein kinase signaling pathway

  • Guiliang Wang
  • Xiaoxia Zuo
  • Can Yuan
  • Yazhu Zheng
  • Lei Jiang
  • Juan Song
  • Ying Liu
  • Bin Zhang
  • Xianzhong Xiao
Article

Abstract

Mipu1 is a novel rat gene recently identified in our lab. Mipu1 cDNA contains a 1,824 bp open reading frame (ORF) and encoded a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the nuclei. Fused to Gal-4 DNA-binding domain and cotransfected with pG5-luc, Mipu1 played a transcriptional suppressive effect. Deletion analysis with a series of truncated fusion proteins indicated that the KRAB motif was a basal repression domain. Overexpression of Mipu1 in H9c2 myogenic cells inhibited the transcriptional activities of SRE and AP-1. RNAi of Mipu1 in H9c2 myogenic cells activated the transcriptional activities of SRE and AP-1. These results suggested that Mipu1 protein might act as a transcriptional repressor in mitogen-activated protein kinase (MAPK) signaling pathway to mediate cellular functions.

Keywords

Mipu1 KRAB motif Transcriptional suppressor Myocardial ischemia MAPK signaling pathway SRE AP-1 

Notes

Acknowledgments

This work was supported by funding from the National Natural Science Foundation of China (30770855, 30672149), the Major National Basic Research Program of China (2007CB512007).

References

  1. 1.
    Plumier JC, Robertson HA, Currie RW (1996) Differential accumulation of mRNA for immediate early genes and heat shock genes in heart after ischaemic injury. J Mol Cell Cardiol 28:1251–1260. doi: 10.1006/jmcc.1996.0115 PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson DP, Wechsler SB, Miura T et al (2002) Myocardial immediate early gene activation after cardiopulmonary bypass with cardiac ischemia-reperfusion. Ann Thorac Surg 73:156–162. doi: 10.1016/S0003-4975(01)03303-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Yuan C, Zhang HL, Liu Y, Wang QP, Xiao XZ (2004) Cloning and characterization of a new gene Mipu1 up-regulated during myocardial ischemia-reperfusion. Prog Biochem Biophys 31:231–236Google Scholar
  4. 4.
    Jiang L, Tang DL, Wang KK, Zhang HL, Yuan C, Duan DY, Xiao XZ (2007) Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipu1. Biochem Biophys Res Commun 356:829–835. doi: 10.1016/j.bbrc.2007.02.138 PubMedCrossRefGoogle Scholar
  5. 5.
    Berg JM (1990) Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem 19:405–421. doi: 10.1146/annurev.bb.19.060190.002201 PubMedCrossRefGoogle Scholar
  6. 6.
    Golden K, Bodmer R (1995) Heart development in Drosophila requires the(segment) polarity gene wingless. Dev Biol 169:619–628. doi: 10.1006/dbio.1995.1174 PubMedCrossRefGoogle Scholar
  7. 7.
    Wu X, Park M, Golden K, Axelrod JD, Bodmer R (1996) The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177:104–116. doi: 10.1006/dbio.1996.0149 PubMedCrossRefGoogle Scholar
  8. 8.
    Kim SS, Chen YM, Leary EO, Witzgall R, Vidal M, Bonventre JV (1996) A novel member of the RING finger family, KRIP-1, associated with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci USA 93:15299–15304. doi: 10.1073/pnas.93.26.15299 PubMedCrossRefGoogle Scholar
  9. 9.
    Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ (1996) KAP-1, a novel corepressor for highly conserved KRAB repression domain. Genes Dev 10:2067–2078. doi: 10.1101/gad.10.16.2067 PubMedCrossRefGoogle Scholar
  10. 10.
    Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215. doi: 10.1016/S0955-0674(96)80067-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257:674–678. doi: 10.1126/science.1323141 PubMedCrossRefGoogle Scholar
  12. 12.
    Hagen G, Muller S, Beato M, Suske G (1994) Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J 13:3843–3851PubMedGoogle Scholar
  13. 13.
    Olga O, Reimer S, Tomas P (2002) XSPR-1 and XSPR-2, novel Sp1 related zinc finger containing genes, are dynamically expressed during Xenopus embryogenesis. Mech Dev 115:117–122. doi: 10.1016/S0925-4773(02)00086-2 CrossRefGoogle Scholar
  14. 14.
    Qi X, Li Y, Xiao J, Yuan W, Yan Y, Wang Y, Liang S, Zhu C, Chen Y, Liu M, Wu X (2006) Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641. Biochem Biophys Res Commun 339:1155–1164PubMedCrossRefGoogle Scholar
  15. 15.
    Schnabl B, Hu K, Mühlbauer M, Hellerbrand C, Stefanovic B, Brenner DA, Schölmerich J (2005) Zinc finger protein 267 is up-regulated during the activation process of human hepatic stellate cells and functions as a negative transcriptional regulator of MMP-10. Biochem Biophys Res Commun 335:87–96. doi: 10.1016/j.bbrc.2005.07.043 PubMedCrossRefGoogle Scholar
  16. 16.
    Li J, Wang Y, Fan X, Mo X, Wang Z, Li Y, Yin Z, Deng Y, Luo N, Zhu C, Liu M, Ma Q, Ocorr K, Yuan W, Wu X (2007) ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway. Biochem Biophys Res Commun 363:895–900. doi: 10.1016/j.bbrc.2007.08.180 PubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Yang D, Bai Y, Mo X, Huang W, Yuan W, Yin Z, Deng Y, Murashko O, Wang Y, Fan X, Zhu C, Ocorr K, Bodmer R, Wu X (2008) ZNF418, a novel human KRAB/C2H2 zinc finger protein, suppresses MAPK signaling pathway. Mol Cell Biochem 310:141–151. doi: 10.1007/s11010-007-9674-4 PubMedCrossRefGoogle Scholar
  18. 18.
    Gou DM, Wang J, Gao L, Sun Y, Peng X, Huang J, Li WX (2004) Identification and functional analysis of a novel human KRAB/C zinc finger gene ZNF300. Biochim Biophys Acta 1676:203–209PubMedGoogle Scholar
  19. 19.
    Jeon BN, Yoo JY, Choi WI, Lee CE, Yoon HG, Hur MW (2008) Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of corepressors. J Biol Chem [Epub ahead of print]Google Scholar
  20. 20.
    Peng H, Begg GE, Harper SL, Friedman JR, Speicher DW, Rauscher FJ (2000) Biochemical analysis of the Krüppel-associated box (KRAB) transcriptional repression domain. J Biol Chem 275:18000–18010. doi: 10.1074/jbc.M001499200 PubMedCrossRefGoogle Scholar
  21. 21.
    Agata Y, Matsuda E, Shimizu A (1999) Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1b/KRIP-1). J Biol Chem 274:16412–16422. doi: 10.1074/jbc.274.23.16412 PubMedCrossRefGoogle Scholar
  22. 22.
    Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869PubMedGoogle Scholar
  23. 23.
    Pearson EJ, Wilsbacher G, Swantek J, Karandikar J, Xu M, Cobb MH (1999) New insights into the control of MAP kinase pathways. Exp Cell Res 253:255–270. doi: 10.1006/excr.1999.4687 PubMedCrossRefGoogle Scholar
  24. 24.
    Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215. doi: 10.1016/S0955-0674(96)80067-6 PubMedCrossRefGoogle Scholar
  25. 25.
    Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB (2008) Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats. Hypertension 52:679–686. doi: 10.1161/HYPERTENSIONAHA.108.113639 PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang W, Zhang Y, Edvinsson L, Xu CB (2008) Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways. J Vasc Res 46:162–174. doi: 10.1159/000153247 PubMedCrossRefGoogle Scholar
  27. 27.
    Kaur K, Singh M, Singh N, Jaggi AS (2008) Possible mechanism of rottlerin induced modulation of ischemia reperfusion injury in isolated rat hearts. Biol Pharm Bull 31:1745–1748. doi: 10.1248/bpb.31.1745 PubMedCrossRefGoogle Scholar
  28. 28.
    Muslin AJ (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115:203–218. doi: 10.1042/CS20070430 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Guiliang Wang
    • 1
    • 2
  • Xiaoxia Zuo
    • 3
  • Can Yuan
    • 1
  • Yazhu Zheng
    • 1
  • Lei Jiang
    • 1
  • Juan Song
    • 1
  • Ying Liu
    • 1
  • Bin Zhang
    • 1
  • Xianzhong Xiao
    • 1
  1. 1.Laboratory of Shock, Department of PathophysiologyXiangya School of Medicine, Central South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Digestive Internal MedicinePeople’s Hospital of Pingxiang CityPingxiangPeople’s Republic of China
  3. 3.Department of Rheumatology and Clinical ImmunologyXiangya Hospital, Central South UniversityChangshaPeople’s Republic of China

Personalised recommendations