Advertisement

Molecular and Cellular Biochemistry

, Volume 318, Issue 1–2, pp 7–12 | Cite as

Tyrosine hydroxylase expression and Cdk5 kinase activity in ataxic cerebellum

  • K-John J. CheungJr.
  • Jesusa L. Rosales
  • Byung-Chul Lee
  • Young-Gil Jeong
  • Ki-Young Lee
Article

Abstract

Ataxia has been associated with abnormalities in neuronal differentiation and migration, which are regulated by Cyclin-dependent kinase 5 (Cdk5). The cerebellum of mice lacking Cdk5 or its activator, p35, resembles those of ataxic reeler and scrambler mice, suggesting that Cdk5 may contribute to ataxic pathology. As with other ataxic mice, the pogo/pogo mouse shows aberrant cerebellar tyrosine hydroxylase (TH) expression. Since Cdk5 phosphorylates and upregulates TH expression, we sought to analyze (i) Cdk5 activity in the pogo cerebellum, which exhibits abnormal TH expression, and (ii) TH expression in the cerebellum of p35−/− and p39−/− mice, which display reduced Cdk5 activity. Interestingly, we found that increased TH expression in the pogo cerebellum coincided with reduced Cdk5 activity. However, reduced Cdk5 activity in both p35−/− and p39−/− cerebellum did not correspond to defects in TH expression. Together, these suggest that abnormal TH expression in the cerebellum might be regulated by mechanisms other than Cdk5 activity.

Keywords

Phosphorylation Purkinje cells Cerebellum Ataxia 

Notes

Acknowledgments

We thank Seung-Hyuk Chung for his excellent technical assistance. This project was supported by an operating grant from Canadian Institutes of Health Research to K-Y. Lee, an Alberta Heritage Foundation for Medical Research Senior Scholar.

References

  1. 1.
    Goldowitz D, Eisenman LM (1992) Genetic mutations affecting murine cerebellar structure and function. In: Driscoll P (ed) Genetically defined animal models of neurobehavioral dysfunction. Birkhauser, Boston, pp 66–88Google Scholar
  2. 2.
    Jeong YG, Hyun BH (2000) Abnormal synaptic organization between granule cells and Purkinje cells in the new ataxic mutant mouse, pogo. Neurosci Lett 294:77–80. doi: 10.1016/S0304-3940(00)01547-0 PubMedCrossRefGoogle Scholar
  3. 3.
    Hyun BH, Kim MS, Choi YK et al (2001) Mapping of the pogo gene, a new ataxic mutant from Korean wild mice, on central mouse chromosome 8. Mamm Genome 12:250–252. doi: 10.1007/s003350010264 PubMedCrossRefGoogle Scholar
  4. 4.
    Jeong YG, Kim MK, Hawkes R (2001) Ectopic expression of tyrosine hydroxylase in Zebrin II immunoreactive Purkinje cells in the cerebellum of the ataxic mutant mouse, pogo. Brain Res Dev Brain Res 129:201–209. doi: 10.1016/S0165-3806(01)00212-7 PubMedCrossRefGoogle Scholar
  5. 5.
    Ohshima T, Gilmore EC, Longenecker G et al (1999) Migration defects of cdk5(/) neurons in the developing cerebellum is cell autonomous. J Neurosci 19:6017–6026PubMedGoogle Scholar
  6. 6.
    Dhavan R, Tsai LH (2001) A decade of Cdk5. Nat Rev Mol Cell Biol 2:749–759. doi: 10.1038/35096019 PubMedCrossRefGoogle Scholar
  7. 7.
    Shelton SB, Johnson GV (2004) Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 88:1313–1326PubMedGoogle Scholar
  8. 8.
    Ohshima T, Ward JM, Huh CG et al (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178. doi: 10.1073/pnas.93.20.11173 PubMedCrossRefGoogle Scholar
  9. 9.
    Jeong YG, Rosales JL, Marzban H et al (2003) The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience 18:323–334. doi: 10.1016/S0306-4522(03)00002-2 CrossRefGoogle Scholar
  10. 10.
    Moy LY, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279:54487–54493. doi: 10.1074/jbc.M406636200 PubMedCrossRefGoogle Scholar
  11. 11.
    Kansy JW, Daubner SC, Nishi A et al (2004) Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J Neurochem 91:374–384. doi: 10.1111/j.1471-4159.2004.02723.x PubMedCrossRefGoogle Scholar
  12. 12.
    Abbott LC, Isaacs KR, Heckroth JA (1996) Co-localization of tyrosine hydroxylase and zebrin II immunoreactivities in Purkinje cells of the mutant mice, tottering and tottering/leaner. Neuroscience 71:461–475. doi: 10.1016/0306-4522(95)00444-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Austin MC, Schultzberg M, Abbott LC et al (1992) Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. Brain Res Mol Brain Res 15:227–240. doi: 10.1016/0169-328X(92)90113-P PubMedCrossRefGoogle Scholar
  14. 14.
    Fletcher CF, Lutz CM, O’Sullivan TN et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617. doi: 10.1016/S0092-8674(00)81381-1 PubMedCrossRefGoogle Scholar
  15. 15.
    Sawada K, Komatsu S, Haga H et al (1999) Abnormal expression of tyrosine hydroxylase immunoreactivity in Purkinje cells precedes the onset of ataxia in dilute-lethal mice. Brain Res 844:188–191. doi: 10.1016/S0006-8993(99)01899-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Sawada K, Komatsu S, Haga H et al (1999) Abnormal expression of tyrosine hydroxylase immunoreactivity in cerebellar cortex of ataxic mutant mice. Brain Res 829:107–112. doi: 10.1016/S0006-8993(99)01347-5 PubMedCrossRefGoogle Scholar
  17. 17.
    Rosales JL, Lee BC, Modarressi M et al (2004) Outer dense fibers (ODF) serve as functional target for Cdk5/p35 in the developing sperm tail. J Biol Chem 279:1224–1232. doi: 10.1074/jbc.M310867200 PubMedCrossRefGoogle Scholar
  18. 18.
    Lu L, Grimm JW, Shaham Y et al (2003) Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J Neurochem 85:1604–1613. doi: 10.1046/j.1471-4159.2003.01824.x PubMedCrossRefGoogle Scholar
  19. 19.
    Herrup K, Mullen RJ (1981) Role of the Staggerer gene in determining Purkinje cell number in the cerebellar cortex of mouse chimeras. Brain Res 227:475–485PubMedGoogle Scholar
  20. 20.
    Heckroth JA, Goldowitz D, Eisenman LM (1989) Purkinje cell reduction in the reeler mutant mouse: a quantitative immunohistochemical study. J Comp Neurol 279:546–555. doi: 10.1002/cne.902790404 PubMedCrossRefGoogle Scholar
  21. 21.
    Smeyne RJ, Goldowitz D (1990) Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. Brain Res Dev Brain Res 52:211–218. doi: 10.1016/0165-3806(90)90237-S PubMedCrossRefGoogle Scholar
  22. 22.
    Napieralski JA, Eisenman LM (1996) Further evidence for a unique developmental compartment in the cerebellum of the meander tail mutant mouse as revealed by the quantitative analysis of Purkinje cells. J Comp Neurol 364:718–728. doi:10.1002/(SICI)1096-9861(19960122)364:4≤718::AID-CNE9≥3.0.CO;2-6PubMedCrossRefGoogle Scholar
  23. 23.
    Ko J, Humbert S, Bronson RT et al (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771PubMedGoogle Scholar
  24. 24.
    Zukerberg LR, Patrick GN, Nikolic M et al (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26:633–646. doi: 10.1016/S0896-6273(00)81200-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Rosales JL, Han JB, Lee KY (2003) Cdk7 functions as a cdk5 activating kinase in brain. Cell Physiol Biochem 13:285–296. doi: 10.1159/000074543 PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou J, Shena Y, Tang Z et al (2000) Striatal extracts promote the survival and phenotypic expression of rat fetal dopaminergic neurons in vitro. Neurosci Lett 292:5–8. doi: 10.1016/S0304-3940(00)01416-6 PubMedCrossRefGoogle Scholar
  27. 27.
    Lee NS, Kim CT, Han SY et al (2006) The absence of phosphorylated tyrosine hydroxylase expression in the Purkinje cells of the ataxic mutant pogo mouse. Anat Histol Embryol 35:178–183. doi: 10.1111/j.1439-0264.2005.00657.x PubMedCrossRefGoogle Scholar
  28. 28.
    Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67:443–462PubMedCrossRefGoogle Scholar
  29. 29.
    Hiesberger T, Trommsdorff M, Howell BW et al (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489. doi: 10.1016/S0896-6273(00)80861-2 PubMedCrossRefGoogle Scholar
  30. 30.
    Homayouni R, Curran T (2000) Cortical development: Cdk5 gets into sticky situations. Curr Biol 10:R331–R334. doi: 10.1016/S0960-9822(00)00459-0 PubMedCrossRefGoogle Scholar
  31. 31.
    Walsh CA, Goffinet AM (2000) Potential mechanisms of mutations that affect neuronal migration in man and mouse. Curr Opin Genet Dev 10:270–274. doi: 10.1016/S0959-437X(00)00076-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • K-John J. CheungJr.
    • 1
  • Jesusa L. Rosales
    • 1
  • Byung-Chul Lee
    • 1
    • 2
  • Young-Gil Jeong
    • 1
    • 3
  • Ki-Young Lee
    • 1
  1. 1.Department of Cell Biology and Anatomy, Southern Alberta Cancer Research Institute and Hotchkiss Brain InstituteThe University of CalgaryCalgaryCanada
  2. 2.Korea Advanced Institute of Science and TechnologyDaeJeonSouth Korea
  3. 3.Department of Anatomy, College of MedicineKonyang UniversityNonsanSouth Korea

Personalised recommendations