Advertisement

Molecular and Cellular Biochemistry

, Volume 317, Issue 1–2, pp 151–159 | Cite as

Inhibitory effect of 30-kDa phytoglycoprotein on expression of TNF-α and COX-2 via activation of PKCα and ERK 1/2 in LPS-stimulated RAW 264.7 cells

  • Sei-Jung Lee
  • Kye-Taek Lim
Article

Abstract

A 30-kDa DBD glycoprotein, which consists of carbohydrate content (61%) and protein content (39%), is a naturally occurring phytoglycoprotein found in Dioscorea batatas Decne (DBD). In the present study, we investigated the anti-inflammatory potentials of the DBD glycoprotein on lipopolysaccharide (LPS, 2 μg/ml)-induced pro-inflammatory signal transduction cascade in murine macrophage cell line (RAW 264.7 cells). Our results showed that the DBD glycoprotein significantly inhibits the translocation of protein kinase C alpha (PKCα) to membrane and the phosphorylation of extracellular signal-regulated kinase (ERK) in LPS-stimulated RAW 264.7 cells. We also found that the DBD glycoprotein (200 μg/ml) has suppressive effects on the DNA binding activities of nuclear factor-kappa B (NF-κB), on the expression of p50, p65, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2, and on the production of superoxide anion radical (\( {\text{O}}_{ 2} ^{{ \bullet - }} \)) in LPS-stimulated RAW 264.7 cells. Interestingly, the expression of TNF-α and COX-2 was significantly blocked by treatment with PKC inhibitor (Staurosporine) as well as ERK1/2 inhibitors (PD98059). Collectively, we assume that the DBD glycoprotein has anti-inflammatory potential, which can modulate pro-inflammatory signal transduction cascade in LPS-stimulated RAW 264.7 cells.

Keywords

DBD glycoprotein ERK1/2 TNF-α COX-2 RAW 264.7 cells 

Notes

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-311-F00108).

References

  1. 1.
    Grip O, Janciauskiene S, Lindgren S (2003) Macrophages in inflammatory bowel disease. Curr Drug Targets Inflamm Allergy 2:155–160. doi: 10.2174/1568010033484179 PubMedCrossRefGoogle Scholar
  2. 2.
    Giroux M, Descoteaux A (2000) Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha. J Immunol 165:3985–3991PubMedGoogle Scholar
  3. 3.
    Medvedev AE, Kopydlowski KM, Vogel SN (2000) Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164:5564–5574PubMedGoogle Scholar
  4. 4.
    Hsu HY, Wen MH (2002) Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem 277:22131–22139. doi: 10.1074/jbc.M111883200 PubMedCrossRefGoogle Scholar
  5. 5.
    Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-κB activation and TNF- gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021PubMedGoogle Scholar
  6. 6.
    Scherle PA, Jones EA, Favata MF, Daulerio AJ, Covington MB, Nurnberg SA et al (1998) Inhibition of MAP kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol 161:5681–5686PubMedGoogle Scholar
  7. 7.
    Nakashima S (2002) Protein kinase C alpha (PKC alpha): regulation and biological function. J Biochem 132:669–675PubMedGoogle Scholar
  8. 8.
    Carter AB, Monick MM, Hunninghake GW (1999) Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol 20:751–758PubMedGoogle Scholar
  9. 9.
    Gao X, Ikuta K, Tajima M, Sairenji TL (2001) 12-O-tetradecanoylphorbol–13-acetate induces Epstein-Barr virus reactivation via NF-kappaB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virology 286:91–99. doi: 10.1006/viro.2001.0965 PubMedCrossRefGoogle Scholar
  10. 10.
    Lee JS, Oh TY, Kim YK, Baik JH, So S, Hahm KB et al (2005) Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: stress-responsive transcription factors and MAP kinases as potential targets. Mutat Res 579:214–224. doi: 10.1016/j.mrfmmm.2005.03.027 PubMedGoogle Scholar
  11. 11.
    Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285. doi: 10.1016/S0891-5849(96)00275-4 PubMedCrossRefGoogle Scholar
  12. 12.
    Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505. doi: 10.1016/j.bcp. 2006.04.011 PubMedCrossRefGoogle Scholar
  13. 13.
    Surh YJ, Kundu JK, Na HK, Lee JS (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135:2993S–3001SPubMedGoogle Scholar
  14. 14.
    Hinz B, Brune K (2002) Cyclooxygenase-2–10 years later. J Pharmacol Exp Ther 300:367–375. doi: 10.1124/jpet.300.2.367 PubMedCrossRefGoogle Scholar
  15. 15.
    Yadav PN, Liu Z, Rafi MM (2003) A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J Pharmacol Exp Ther 305:925–931. doi: 10.1124/jpet.103.049171 PubMedCrossRefGoogle Scholar
  16. 16.
    Farombi EO, Britton G, Emerole GO (2000) Evaluation of the antioxidant activity and partial characterization of extracts from browned yam flour diet. Food Res Int 33:493–499. doi: 10.1016/S0963-9969(00)00074-0 CrossRefGoogle Scholar
  17. 17.
    Araghiniknam M, Chung S, Nelson-White T, Eskelson C, Watson RR (1996) Antioxidant activity of dioscorea and dehydroepiandrosterone (DHEA) in older humans. Life Sci 59:PL147–PL157. doi: 10.1016/0024-3205(96)00396-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Oh PH, Lim KT (2007) Antioxidant activity of Dioscorea batatas Decne glycoprotein. Eur Food Res Technol 226:507–515. doi: 10.1007/s00217-007-0563-6 CrossRefGoogle Scholar
  19. 19.
    Lee SJ, Heo KS, Oh PS, Lim K, Lim KT (2004) Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B in NIH/3T3 cells. Toxicol Lett 146:159–174. doi: 10.1016/j.toxlet.2003.10.005 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X (2003) Role of reactive oxygen species and MAPKs in vanadate-induced G(2)/M phase arrest. Free Radic Biol Med 34:1333–1342. doi: 10.1016/S0891-5849(03)00145-X PubMedCrossRefGoogle Scholar
  21. 21.
    Patton WF, Dhanak MR, Jacobson BS (1989) Differential partitioning of plasma membrane proteins into the triton X-100-insoluble cytoskeleton fraction during concanavalin A-induced receptor redistribution. J Cell Sci 92:85–91PubMedGoogle Scholar
  22. 22.
    Lee SJ, Lim KT (2007) Glycoprotein isolated from Ulmus davidiana Nakai regulates expression of iNOS and COX-2 in vivo and in vitro. Food Chem Toxicol 45:990–1000. doi: 10.1016/j.fct.2006.12.006 PubMedCrossRefGoogle Scholar
  23. 23.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  24. 24.
    Gaidamashvili M, Ohizumi Y, Iijima S, Takayama T, Ogawa T, Muramoto K (2004) Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities. J Biol Chem 279:26028–26035. doi: 10.1074/jbc.M402139200 PubMedCrossRefGoogle Scholar
  25. 25.
    Hou WC, Chen HJ, Lin YH (1999) Dioscorins, the major tuber storage proteins of yam (Dioscorea batatas Decne), with dehydroascorbate reductase and monodehydroascorbate reductase activities. Plant Sci 149:151–156. doi: 10.1016/S0168-9452(99)00152-1 CrossRefGoogle Scholar
  26. 26.
    Zava DT, Dollbaum CM, Blen M (1998) Estrogen and progestin bioactivity of foods, herbs, and spices. Proc Soc Exp Biol Med 217:369–378PubMedGoogle Scholar
  27. 27.
    Hou WC, Liu JS, Chen HJ, Chen TE, Chang CF, Lin YH (1999) Dioscorin, the major tuber storage protein of yam (Dioscorea batatas decne) with carbonic anhydrase and trypsin inhibitor activities. J Agric Food Chem 47:2168–2172. doi: 10.1021/jf980738o PubMedCrossRefGoogle Scholar
  28. 28.
    Barnes PJ, Karin M (1997) Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071. doi: 10.1056/NEJM199704103361506 PubMedCrossRefGoogle Scholar
  29. 29.
    Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor kappa B in inflammatory bowel disease. Gut 42:477–484PubMedCrossRefGoogle Scholar
  30. 30.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. doi: 10.1038/nature01322 PubMedCrossRefGoogle Scholar
  31. 31.
    Rojkind M, Domínguez-Rosales JA, Nieto N, Greenwel P (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872–1891. doi: 10.1007/PL00012511 PubMedCrossRefGoogle Scholar
  32. 32.
    Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257. doi: 10.1146/annurev.pa.23.040183.001323 PubMedCrossRefGoogle Scholar
  33. 33.
    Lee SJ, Lim KT (2008) Phytoglycoprotein inhibits interleukin-1beta and interleukin-6 via p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated RAW 264.7 cells. Naunyn Schmiedebergs Arch Pharmacol 377:45–54. doi: 10.1007/s00210-007-0253-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Molecular Biochemistry Laboratory, Biotechnology Research Institute and Center for the Control of Animal Hazards Using Biotechnology (BK 21)Chonnam National UniversityKwang-juSouth Korea
  2. 2.Molecular Biochemistry Laboratory, Biotechnology Research InstituteChonnam National UniversityKwang-juSouth Korea

Personalised recommendations