Advertisement

Molecular and Cellular Biochemistry

, Volume 316, Issue 1–2, pp 135–140 | Cite as

Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies

  • Dieter Heuss
  • Janine Klascinski
  • Steffen W. Schubert
  • Tehmur Moriabadi
  • Hanns Lochmüller
  • Said Hashemolhosseini
Article

Abstract

Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2β knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800–1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2α and CK2β and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.

Keywords

Protein kinase CK2 Skeletal muscle Myopathy Myasthenia 

Notes

Acknowledgments

We are indebted to Clarke Slater (NewCastle, England) for critically reading the manuscript and numerous helpful comments. This work was supported by grants of the Interdisciplinary Center for Clinical Research at the University Hospital of the University of Erlangen-Nuremberg (IZKF E2) to Dieter Heuss and Said Hashemolhosseini and the Deutsche Forschungsgemeinschaft (DFG) to Said Hashemolhosseini (HA 3309/1-3).

References

  1. 1.
    Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442. doi: 10.1146/annurev.neuro.22.1.389 PubMedCrossRefGoogle Scholar
  2. 2.
    Watty A, Neubauer G, Dreger M, Zimmer M, Wilm M, Burden SJ (2000) The in vitro and in vivo phosphotyrosine map of activated MuSK. Proc Natl Acad Sci USA 97:4585–4590. doi: 10.1073/pnas.080061997 PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou H, Glass DJ, Yancopoulos GD, Sanes JR (1999) Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J Cell Biol 146:1133–1146. doi: 10.1083/jcb.146.5.1133 PubMedCrossRefGoogle Scholar
  4. 4.
    Herbst R, Burden SJ (2000) The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J 19:67–77. doi: 10.1093/emboj/19.1.67 PubMedCrossRefGoogle Scholar
  5. 5.
    Dai Z, Luo X, Xie H, Peng HB (2000) The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 150:1321–1334. doi: 10.1083/jcb.150.6.1321 PubMedCrossRefGoogle Scholar
  6. 6.
    McConville J, Vincent A (2002) Diseases of the neuromuscular junction. Curr Opin Pharmacol 2:296–301. doi: 10.1016/S1471-4892(02)00156-X PubMedCrossRefGoogle Scholar
  7. 7.
    Mohamed AS, Rivas-Plata KA, Kraas JR, Saleh SM, Swope SL (2001) Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J Neurosci 21:3806–3818PubMedGoogle Scholar
  8. 8.
    Finn AJ, Feng G, Pendergast AM (2003) Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nat Neurosci 6:717–723. doi: 10.1038/nn1071 PubMedCrossRefGoogle Scholar
  9. 9.
    Sadasivam G, Willmann R, Lin S, Erb-Vogtli S, Kong XC, Ruegg MA et al (2005) Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors. J Neurosci 25:10479–10493. doi: 10.1523/JNEUROSCI.2103-05.2005 PubMedCrossRefGoogle Scholar
  10. 10.
    Weston C, Yee B, Hod E, Prives J (2000) Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J Cell Biol 150:205–212. doi: 10.1083/jcb.150.1.205 PubMedCrossRefGoogle Scholar
  11. 11.
    Weston C, Gordon C, Teressa G, Hod E, Ren XD, Prives J (2003) Cooperative regulation by Rac and Rho of agrin-induced acetylcholine receptor clustering in muscle cells. J Biol Chem 278:6450–6455. doi: 10.1074/jbc.M210249200 PubMedCrossRefGoogle Scholar
  12. 12.
    Lacazette E, Le Calvez S, Gajendran N, Brenner HR (2003) A novel pathway for MuSK to induce key genes in neuromuscular synapse formation. J Cell Biol 161:727–736. doi: 10.1083/jcb.200210156 PubMedCrossRefGoogle Scholar
  13. 13.
    Cheusova T, Khan MA, Schubert SW, Gavin AC, Buchou T, Jacob G et al (2006) Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes Dev 20:1800–1816. doi: 10.1101/gad.375206 PubMedCrossRefGoogle Scholar
  14. 14.
    Strochlic L, Cartaud A, Cartaud J (2005) The synaptic muscle-specific kinase (MuSK) complex: new partners, new functions. Bioessays 27:1129–1135. doi: 10.1002/bies.20305 PubMedCrossRefGoogle Scholar
  15. 15.
    Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T et al (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1802–1805. doi: 10.1126/science.1127142 PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson JA, Ng JJ, Bowe C, McDonald C, Richman DP, Wollmann RL, Maselli RA (2008) Variable phenotypes associated with mutations in DOK7. Muscle Nerve 37(4):448–456PubMedCrossRefGoogle Scholar
  17. 17.
    Hamuro J, Higuchi O, Okada K, Ueno M, Iemura S, Natsume T, Spearman H, Beeson D, Yamanashi Y (2008) Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7. J Biol Chem 283(9):5518–5524PubMedCrossRefGoogle Scholar
  18. 18.
    Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S et al (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313:1975–1978. doi: 10.1126/science.1130837 PubMedCrossRefGoogle Scholar
  19. 19.
    Slater CR (2007) Structural factors influencing the efficacy of neuromuscular transmission. Ann NY Acad Sci. Dec 20Google Scholar
  20. 20.
    Palace J, Lashley D, Newsom-Davis J, Cossins J, Maxwell S, Kennett R et al (2007) Clinical features of the DOK7 neuromuscular junction synaptopathy. Brain 130:1507–1515. doi: 10.1093/brain/awm072 PubMedCrossRefGoogle Scholar
  21. 21.
    Muller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V et al (2007) Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain 130:1497–1506. doi: 10.1093/brain/awm068 PubMedCrossRefGoogle Scholar
  22. 22.
    Hashemolhosseini S, Hadjihannas M, Stolt CC, Haas CS, Amann K, Wegner M (2002) Restricted expression of mouse GCMa/Gcm1 in kidney and thymus. Mech Dev 118:175–178. doi: 10.1016/S0925-4773(02)00239-3 PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043. doi: 10.1097/00001813-200511000-00001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Dieter Heuss
    • 1
  • Janine Klascinski
    • 2
  • Steffen W. Schubert
    • 2
  • Tehmur Moriabadi
    • 1
  • Hanns Lochmüller
    • 3
  • Said Hashemolhosseini
    • 2
  1. 1.Neurologische KlinikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für BiochemieUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Labor für Molekulare Myologie, Friedrich-Baur-Institut, Neurologische KlinikLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations