Molecular and Cellular Biochemistry

, Volume 316, Issue 1–2, pp 115–126 | Cite as

Ability of CK2β to selectively regulate cellular protein kinases

  • Birgitte B. Olsen
  • Barbara Guerra


The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCFβ-TrCP and subsequently degraded by the proteasome machinery. Previously, it has been reported that although Wee1 lacks the conserved binding motif recognised by β-TrCP, the CDK-catalysed phosphorylation of Wee1 at Ser123 creates a phosphodegron and primes phosphorylation of two other protein kinases, polo-like kinase 1 (PLK1) and protein kinase CK2, which create two additional phosphodegrons recognised by β-TrCP. These events contribute to destabilise Wee1 at the onset of mitosis (Watanabe et al. Proc Natl Acad Sci USA 101:4419–4424, 2004). We show here that in addition to the ability of CK2 to phosphorylate Wee1 as reported earlier, the regulatory β-subunit of protein kinase CK2 can interact with Wee1 in high molecular mass complexes. Indirect immunofluorescence microscopy revealled subcellular co-localisation of CK2β and Wee1 in the nucleus. Moreover, in vitro phosphorylation assays showed that CK2β indirectly up-regulates the activity of CDK1 with respect to histone H1 phosphorylation by inhibiting Wee1 kinase. These findings support the view that CK2β regulates various intracellular processes by modulating the activity of protein kinases that are distinct from CK2 and that protein kinase CK2 plays an important role in events related to the regulation of cell cycle progression as a tetrameric enzyme but also through the individual subunits.


Protein kinase CK2 Wee1 Phosphorylation Protein interaction 



We thank Dr. O.-G. Issinger for critically reading the manuscript and Tina Holm for excellent technical assistance. This work was supported by a bequest for cancer research from Karen Marie Maaløe, Odense, Denmark and the Novo Nordisk Foundation, grant no. 5373 to B.G.


  1. 1.
    Litchfield DW (2003) Protein Kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. doi: 10.1042/BJ20021469 PubMedCrossRefGoogle Scholar
  2. 2.
    Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 1:67–79PubMedGoogle Scholar
  3. 3.
    Guerra B, Issinger OG, Wang JY (2003) Modulation of human checkpoint kinase Chk1 by the regulatory beta-subunit of protein kinase CK2. Oncogene 22:4933–4942. doi: 10.1038/sj.onc.1206721 PubMedCrossRefGoogle Scholar
  4. 4.
    Kreutzer J, Guerra B (2007) The regulatory beta-subunit of protein kinase CK2 accelerates the degradation of CDC25A phosphatase through the checkpoint kinase Chk1. Int J Oncol 31:1251–1259PubMedGoogle Scholar
  5. 5.
    Coleman TR, Dunphy WG (1994) Cdc2 regulatory factors. Curr Opin Cell Biol 6:877–882. doi: 10.1016/0955-0674(94)90060-4 PubMedCrossRefGoogle Scholar
  6. 6.
    Lew DJ, Kornbluth S (1996) Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8:795–804. doi: 10.1016/S0955-0674(96)80080-9 PubMedCrossRefGoogle Scholar
  7. 7.
    Lundgren K, Walworth N, Booher R, Dembski M, Kirchner M, Beach D (1991) Mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64:1111–1122. doi: 10.1016/0092-8674(91)90266-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Parker LL, Atherton-Fessler S, Piwnica-Worms H (1992) p107wee1 is a dual specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA 89:2917–2921. doi: 10.1073/pnas.89.7.2917 PubMedCrossRefGoogle Scholar
  9. 9.
    Mueller PR, Coleman TR, Kumagai A, Dunphy WG (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270:86–90. doi: 10.1126/science.270.5233.86 PubMedCrossRefGoogle Scholar
  10. 10.
    Perry JA, Kornbluth S (2007) Cdc25 and Wee1: analogous opposites? Cell Div 2:12Google Scholar
  11. 11.
    Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T et al (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci USA 101:4419–4424. doi: 10.1073/pnas.0307700101 PubMedCrossRefGoogle Scholar
  12. 12.
    Watanabe N, Arai H, Iwasaki J, Shiina M, Ogata K, Hunter T et al (2004) Cyclin-dependent kinase (CDK) phosphorylation destabilises somatic Wee1 via multiple pathways. Proc Natl Acad Sci USA 102:11663–11668. doi: 10.1073/pnas.0500410102 CrossRefGoogle Scholar
  13. 13.
    Guerra B, Siemer S, Boldyreff B, Issinger OG (1999) Protein kinase CK2: evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Lett 3:353–357. doi: 10.1016/S0014-5793(99)01553-7 CrossRefGoogle Scholar
  14. 14.
    Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331. doi: 10.1093/emboj/20.19.5320 PubMedCrossRefGoogle Scholar
  15. 15.
    Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci USA 93:13–20. doi: 10.1073/pnas.93.1.13 PubMedCrossRefGoogle Scholar
  16. 16.
    Toczyski DP, Galgoczy DJ, Hartwell LH (1997) CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106. doi: 10.1016/S0092-8674(00)80375-X PubMedCrossRefGoogle Scholar
  17. 17.
    Teitz T, Eli D, Penner M, Bakhanasvili M, Naiman T, Timme TL et al (1990) Expression of the cDNA for the beta subunit of human casein kinase II confers partial resistance on xeroderma pigmentosum cells. Mutat Res 236:85–97PubMedGoogle Scholar
  18. 18.
    Guerra B, Boldyreff B, Issinger OG (2001) FAS-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction. Int J Oncol 19:1117–1126PubMedGoogle Scholar
  19. 19.
    Guerra B, Issinger OG (1998) p53 and the ribosomal protein L5 participate in high molecular mass complex formation with protein kinase CK2 in murine teratocarcinoma cell line F9 after serum stimulation and cisplatin treatment. FEBS Lett 434:115–120. doi: 10.1016/S0014-5793(98)00962-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Chen M, Li D, Krebs EG, Cooper JA (1997) The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Proc Natl Acad Sci USA 194:9136–9140. doi: 10.1073/pnas.94.17.9136 CrossRefGoogle Scholar
  21. 21.
    Boldyreff B, Issinger OG (1997) A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit. FEBS Lett 403:197–199. doi: 10.1016/S0014-5793(97)00010-0 PubMedCrossRefGoogle Scholar
  22. 22.
    Hagemann C, Kalmes A, Wixler V, Wixler L, Schuster T, Rapp UR (1997) The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett 403:200–202. doi: 10.1016/S0014-5793(97)00011-2 PubMedCrossRefGoogle Scholar
  23. 23.
    Katayama K, Fujita N, Tsurui T (2005) AKT/protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle progression at G2/M transition. Mol Cell Biol 25:5725–5737. doi: 10.1128/MCB.25.13.5725-5737.2005 PubMedCrossRefGoogle Scholar
  24. 24.
    Faust M, Montenarh M (2000) Subcellular localisation of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340. doi: 10.1007/s004410000256 PubMedCrossRefGoogle Scholar
  25. 25.
    Filhol O, Nueda A, Martel V, Gerber-Scokaert D, Benitez MJ, Souchier C et al (2003) Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 23:975–987. doi: 10.1128/MCB.23.3.975-987.2003 PubMedCrossRefGoogle Scholar
  26. 26.
    Kusk M, Ahmed R, Thomsen B, Bendixen C, Issinger B, Issinger OG (1999) Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins. Mol Cell Biochem 191:51–58. doi: 10.1023/A:1006840613986 PubMedCrossRefGoogle Scholar
  27. 27.
    O’Brien KA, Lemke SJ, Cocke KS, Rao RN, Beckmann RP (1999) Casein kinase 2 binds to and phosphorylates BRCA1. Biochem Biophys Res Commun 260:658–664. doi: 10.1006/bbrc.1999.0892 PubMedCrossRefGoogle Scholar
  28. 28.
    Lieberman SL, Ruderman JV (2004) CK2 beta, which inhibits Mos function, binds to a discrete domain in the N-terminus of Mos. Dev Biol 268:271–279. doi: 10.1016/j.ydbio.2003.12.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Bjørling-Poulsen M, Siehler S, Wiesmüller L, Meek D, Niefind K, Issinger OG (2005) The ‘regulatory’ beta-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation. Oncogene 24:6194–6200. doi: 10.1038/sj.onc.1208762 PubMedCrossRefGoogle Scholar
  30. 30.
    Kim ST (2005) Protein kinase CK2 interacts with Chk2 and phosphorylates Mre11 on serine 649. Biochem Biophys Res Commun 331:247–252. doi: 10.1016/j.bbrc.2005.03.162 PubMedCrossRefGoogle Scholar
  31. 31.
    Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM (2004) Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 83:153–167. doi: 10.1016/S0888-7543(03)00235-0 PubMedCrossRefGoogle Scholar
  32. 32.
    Tchernev VT, Mansfield TA, Giot L, Kumar AM, Nandabalan K, Li Y et al (2002) The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol Med 8:56–54PubMedGoogle Scholar
  33. 33.
    Götz C, Wagner P, Issinger OG, Montenarh M (1996) p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene 13:391–398PubMedGoogle Scholar
  34. 34.
    Romero-Oliva F, Allende JE (2001) Protein p21(WAF1/CIP1) is phosphorylated by protein kinase CK2 in vitro and interacts with the amino terminal end of CK2 beta subunit. J Cell Biochem 81:445–452. doi:10.1002/1097-4644(20010601)81:3≤445::AID-JCB1058≥3.0.CO;2-2Google Scholar
  35. 35.
    Kim YS, Lee JH, Park JW, Bae YS (2001) Regulation of protein kinase CKII by direct interaction with the C-terminal region of p47(phox). Biochem Biophys Res Commun 286:87–93. doi: 10.1006/bbrc.2001.5362 PubMedCrossRefGoogle Scholar
  36. 36.
    Bai X, Chan ED, Xu X (2003) The protein of a new gene, Tctex4, interacts with protein kinase CK2beta subunit and is highly expressed in mouse testis. Biochem Biophys Res Commun 307:86–91. doi: 10.1016/S0006-291X(03)01118-5 PubMedCrossRefGoogle Scholar
  37. 37.
    Faust M, Kartarius S, Schwindling SL, Montenarh M (2002) Cyclin H is a new binding partner for protein kinase CK2. Biochem Biophys Res Commun 296:13–19. doi: 10.1016/S0006-291X(02)00825-2 PubMedCrossRefGoogle Scholar
  38. 38.
    Kang KR, Chung SI (2003) Protein kinase CK2 phosphorylates and interacts with deoxyhypusine synthase in HeLa cells. Exp Mol Med 35:556–564PubMedGoogle Scholar
  39. 39.
    Jaffe L, Ryoo HD, Mann RS (1997) A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev 11:1327–1340. doi: 10.1101/gad.11.10.1327 PubMedCrossRefGoogle Scholar
  40. 40.
    Hériché JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM, Goldberg Y (1997) Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science 276:952–955. doi: 10.1126/science.276.5314.952 PubMedCrossRefGoogle Scholar
  41. 41.
    Riera M, Roher N, Miró F, Gil C, Trujillo R, Aguilera J et al (1999) Association of protein kinase CK2 with eukaryotic translation initiation factor eif-2 and with grp94/endoplasmin. Mol Cell Biochem 191:97–104. doi: 10.1023/A:1006810311743 PubMedCrossRefGoogle Scholar
  42. 42.
    Roher N, Sarno S, Miró F, Ruzzene M, Llorens F, Meggio F et al (2001) The carboxy-terminal domain of Grp94 binds to protein kinase CK2 alpha, but not to CK2 holoenzyme. FEBS Lett 505:42–46. doi: 10.1016/S0014-5793(01)02781-8 PubMedCrossRefGoogle Scholar
  43. 43.
    Lehnert S, Götz C, Kartarius S, Schäfer B, Montenarh M (2008) Protein kinase CK2 interacts with the splicing factor hPrp3p. Oncogene 27:2390–2400. doi: 10.1038/sj.onc.1210882 Google Scholar
  44. 44.
    Vancurova I, Paine TM, Lou W, Paine PL (1995) Nucleoplasmin associates with and is phosphorylated by casein kinase II. J Cell Sci 108:779–787PubMedGoogle Scholar
  45. 45.
    Semplici F, Meggio F, Pinna LA, Oliviero S (2002) CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation. Oncogene 21:3978–3987. doi: 10.1038/sj.onc.1205574 PubMedCrossRefGoogle Scholar
  46. 46.
    Bek S, Kemler R (2002) Protein kinase CKII regulates the interaction of beta-catenin with alpha-catenin and its protein stability. J Cell Sci 115:4743–4753. doi: 10.1242/jcs.00154 PubMedCrossRefGoogle Scholar
  47. 47.
    Guerra B (2006) Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol 28:685–693PubMedGoogle Scholar
  48. 48.
    Zhang F, White RL, Neufeld KL (2001) Cell density and phosphorylation control the subcellular localisation of adenomatous polyposis coli protein. Mol Cell Biol 21:8143–8156. doi: 10.1128/MCB.21.23.8143-8156.2001 PubMedCrossRefGoogle Scholar
  49. 49.
    Homma MK, Li D, Krebs EG, Yuasa Y, Homma Y (2002) Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein. Proc Natl Acad Sci USA 99:5959–5964. doi: 10.1073/pnas.092143199 PubMedCrossRefGoogle Scholar
  50. 50.
    Willert K, Brink M, Wodarz A, Varmus H, Nusse R (1997) Casein kinase 2 associates with and phosphorylates disheveled. EMBO J 16:3089–3096. doi: 10.1093/emboj/16.11.3089 PubMedCrossRefGoogle Scholar
  51. 51.
    Song DH, Sussman DJ, Seldin DC (2000) Endogenous protein kinase CK2 participates in Wnt signalling in mammary epithelial cells. J Biol Chem 275:23790–23797. doi: 10.1074/jbc.M909107199 PubMedCrossRefGoogle Scholar
  52. 52.
    Karki S, Tokito MK, Holzbaur EL (1997) Casein kinase II binds to and phosphorylates cytoplasmic dynein. J Biol Chem 272:5887–5891. doi: 10.1074/jbc.272.9.5887 PubMedCrossRefGoogle Scholar
  53. 53.
    Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H et al (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16 and SSRP1. Mol Cell 7:293–292. doi: 10.1016/S1097-2765(01)00176-9 CrossRefGoogle Scholar
  54. 54.
    Keller DM, Lu H (2002) p53 serine 392 phosphorylation increase after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277:50206–50213. doi: 10.1074/jbc.M209820200 PubMedCrossRefGoogle Scholar
  55. 55.
    Skjerpen CS, Nilsen T, Wesche J, Olsnes S (2002) Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J 21:4058–4069. doi: 10.1093/emboj/cdf402 PubMedCrossRefGoogle Scholar
  56. 56.
    Jin YJ, Burakoff SJ (1993) The 25-kDa FK506-binding protein is localised in the nucleus and associates with casein kinase II and nucleolin. Proc Natl Acad Sci USA 90:7769–7773. doi: 10.1073/pnas.90.16.7769 PubMedCrossRefGoogle Scholar
  57. 57.
    Rodriguez P, Ruiz MT, Price GB, Zannis-Hadjopoulos M (2004) NAP-2 is part of multi-protein complexes in HeLa cells. J Cell Biochem 93:398–408. doi: 10.1002/jcb.20163 PubMedCrossRefGoogle Scholar
  58. 58.
    Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275:16569–16573. doi: 10.1074/jbc.M000312200 PubMedCrossRefGoogle Scholar
  59. 59.
    Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG (2002) Direct identification of PTEN phosphorylation sites. FEBS Lett 528:145–153. doi: 10.1016/S0014-5793(02)03274-X PubMedCrossRefGoogle Scholar
  60. 60.
    Hannan RD, Hempel WM, Cavanaugh A, Arino T, Dimitrov SI, Moss T, Rothblum L (1998) Affinity purification of mammalian RNA polymerase I. Identification of an associated kinase. J Biol Chem 273:1257–1267. doi: 10.1074/jbc.273.2.1257 Google Scholar
  61. 61.
    Panova TB, Panov KI, Russell J, Zomerdijk JC (2006) Casein kinase 2 associates with initiation-competent RNA polymerase I and has multiple roles in ribosomal DNA transcription. Mol Cell Biol 26:5957–5968. doi: 10.1128/MCB.00673-06 PubMedCrossRefGoogle Scholar
  62. 62.
    Götz C, Koenig MG, Issinger OG, Montenarh M (1995) A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40. Eur J Biochem 23:327–334. doi: 10.1111/j.1432-1033.1995.327_1.x CrossRefGoogle Scholar
  63. 63.
    Ghavidel A, Schultz MC (1997) Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. Genes Dev 11:2780–2789. doi: 10.1101/gad.11.21.2780 PubMedCrossRefGoogle Scholar
  64. 64.
    Ghavidel A, Schultz MC (2001) TATA binding protein-associated CK2 transduces DNA damage to the RNA polymerase III transcriptional machinery. Cell 106:575–584. doi: 10.1016/S0092-8674(01)00473-1 PubMedCrossRefGoogle Scholar
  65. 65.
    Johnston IM, Allison SJ, Morton JP, Schramm L, Scott PH, White RJ (2002) CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells. Mol Cell Biol 22:3757–3768. doi: 10.1128/MCB.22.11.3757-3768.2002 PubMedCrossRefGoogle Scholar
  66. 66.
    Maldonado E, Allende JE (1999) Phosphorylation of yeast TBP by protein kinase CK2 reduces its specific binding to DNA. FEBS Lett 443:256–260. doi: 10.1016/S0014-5793(98)01734-7 PubMedCrossRefGoogle Scholar
  67. 67.
    Faust M, Schuster N, Montenarh M (1999) Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett 462:51–56. doi: 10.1016/S0014-5793(99)01492-1 PubMedCrossRefGoogle Scholar
  68. 68.
    Olsen BB, Petersen J, Issinger OG (2006) BID, an interaction partner of protein kinase CK2alpha. Biol Chem 387:441–449. doi: 10.1515/BC.2006.059 PubMedCrossRefGoogle Scholar
  69. 69.
    Miyata Y, Nishida E (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc7, an Hsp90-cochaperone. Mol Cell Biochem 274:171–179. doi: 10.1007/s11010-005-2949-8 PubMedCrossRefGoogle Scholar
  70. 70.
    Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD et al (2000) Identification and characterisation of CKIP–1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem 275:14295–14306. doi: 10.1074/jbc.275.19.14295 PubMedCrossRefGoogle Scholar
  71. 71.
    Litchfield DW, Bosc DG, Canton DA, Saulnier RB, Vilk G, Zhang C (2001) Functional specialisation of CK2 isoform and characterisation of isoform-specific binding partners. Mol Cell Biochem 227:21–29. doi: 10.1023/A:1013188101465 PubMedCrossRefGoogle Scholar
  72. 72.
    Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047PubMedGoogle Scholar
  73. 73.
    Miyata Y, Yahara I (1995) Interaction between casein kinase II and the 90-kDa stress protein, Hsp90. Biochemistry 34:8123–8129. doi: 10.1021/bi00025a019 PubMedCrossRefGoogle Scholar
  74. 74.
    Suittanamongkol S, Polanowski-Grabowska R, Gear AR (2002) Heat-shock protein 90 complexes in resting and thrombin-activated platelets. Biochem Biophys Res Commun 297:129–133. doi: 10.1016/S0006-291X(02)02138-1 CrossRefGoogle Scholar
  75. 75.
    Castelli M, Camps M, Gillieron C, Leroy D, Arkinstall S, Rommel C et al (2004) MAP kinase phosphatase 3 (MKP3) interacts with and is phosphorylated by protein kinase CK2. J Biol Chem 43:44731–44739. doi: 10.1074/jbc.M407669200 CrossRefGoogle Scholar
  76. 76.
    Li M, Strand D, Krehan A, Pyerin W, Heid H, Neumann B et al (1999) Casein kinase 2 binds and phosphorylates the nucleosome assembly protein-1 (NAP1) in Drosophila Melanogaster. J Mol Biol 293:1067–1084. doi: 10.1006/jmbi.1999.3207 PubMedCrossRefGoogle Scholar
  77. 77.
    Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW (2002) Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem 277:23054–23064. doi: 10.1074/jbc.M200111200 PubMedCrossRefGoogle Scholar
  78. 78.
    Kowalska-Loth B, Girstun A, Derlacz R, Staron K (2003) Activation of human topoisomerase I by protein kinase CK2. Mol Biol Rep 30:107–111. doi: 10.1023/A:1023942226954 PubMedCrossRefGoogle Scholar
  79. 79.
    Kordiyak GJ, Jakes S, Ingebritsen TS, Benbow RM (1994) Casein kinase II stimulates Xenopus Laevis DNA topoisomerase I by physical association. Biochemistry 33:13484–13491. doi: 10.1021/bi00249a037 PubMedCrossRefGoogle Scholar
  80. 80.
    Ritter M, Buechler C, Kapinsky M, Schmitz G (2001) Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signalling on CKII and protein kinase C. Eur J Immunol 31:999–1009. doi:10.1002/1521-4141(200104)31:4≤999::AID-IMMU999≥3.0.CO;2-RGoogle Scholar
  81. 81.
    Calvo J, Vilà JM, Places L, Simarro M, Padilla O, Andreu D et al (1998) Human CD5 signalling and constitutive phosphorylation of C-terminal serine residues by casein kinase II. J Immunol 161:6022–6029PubMedGoogle Scholar
  82. 82.
    Raman C, Kuo A, Deshane J, Litchfield DW, Kimberley RP (1998) Regulation of casein kinase 2 by direct interaction with cell surface receptor CD5. J Biol Chem 273:19183–19189. doi: 10.1074/jbc.273.30.19183 PubMedCrossRefGoogle Scholar
  83. 83.
    Theis-Febvre N, Filhol O, Froment C, Cazales M, Cochet C, Monsarrat B et al (2002) Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 22:220–232. doi: 10.1038/sj.onc.1206107 CrossRefGoogle Scholar
  84. 84.
    Block K, Boyer TG, Yew PR (2001) Phosphorylation of the ubiquitin-conjugating enzyme CDC34, by casein kinase 2. J Biol Chem 276:41049–41058. doi: 10.1074/jbc.M106453200 PubMedCrossRefGoogle Scholar
  85. 85.
    Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F et al (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787. doi: 10.1074/jbc.271.40.24781 PubMedCrossRefGoogle Scholar
  86. 86.
    Shimada K, Kondo K, Yamanishi K (2004) Human herpes virus 6 immediate-early 2 protein interacts with heterogeneous ribonucleoprotein K and casein kinase 2. Microbiol Immunol 48:205–210PubMedGoogle Scholar
  87. 87.
    Wadd S, Bryant H, Filhol O, Scott JE, Hsieh TY, Everett RD et al (1999) The multifunctional herpes simplex virus IE63 protein interacts with heterogeneous ribonucleoprotein K and with casein kinase 2. J Biol Chem 274:28991–28998. doi: 10.1074/jbc.274.41.28991 PubMedCrossRefGoogle Scholar
  88. 88.
    Lee JH, Kim JM, Kim MS, Lee YT, Marshak DR, Bae YS (1997) The highly basic ribosomal protein L41 interacts with the beta subunit of protein kinase CKII and stimulates phosphorylation of DNA topoisomerase II alpha by CKII. Biophys Biochem Res Commun 238:462–467. doi: 10.1006/bbrc.1997.7317 CrossRefGoogle Scholar
  89. 89.
    Ahn BH, Lee JH, Bae YS (2003) Identification of mutations in protein kinase CKIIbeta subunit that affect its binding to ribosomal protein L41 and homodimerisation. J Biochem Mol Biol 36:244–348Google Scholar
  90. 90.
    Ahn BH, Kin TH, Bae YS (2001) Mapping of the interaction domain of the protein kinase CKII beta subunit with target proteins. Mol Cells 12:158–163PubMedGoogle Scholar
  91. 91.
    Kim JM, Cha JY, Marshak DR, Bae YS (1996) Interaction of the beta subunit of casein kinase II with the ribosomal protein L5. Biochem Biophys Res Commun 226:180–186. doi: 10.1006/bbrc.1996.1330 PubMedCrossRefGoogle Scholar
  92. 92.
    Li D, Meier UT, Dobrowolska G, Krebs EG (1997) Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem 272:3773–3779. doi: 10.1074/jbc.272.6.3773 PubMedCrossRefGoogle Scholar
  93. 93.
    Li D, Dobrowolska G, Krebs EG (1999) Identification of proteins that associate with protein kinase CK2. Mol Cell Biochem 191:223–228. doi: 10.1023/A:1006848515861 PubMedCrossRefGoogle Scholar
  94. 94.
    Tapia JC, Bolanos-Garcia VM, Sayed M, Allende CC, Allende JE (2004) Cell cycle regulatory protein p27KIP1 is a substrate and interacts with protein kinase CK2. J Cell Biochem 91:865–879. doi: 10.1002/jcb.20027 PubMedCrossRefGoogle Scholar
  95. 95.
    Appel K, Wagner P, Boldyreff B, Issinger OG, Montenarh M (1995) Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene 11:1971–1978PubMedGoogle Scholar
  96. 96.
    Götz C, Scholtes P, Prowald A, Schuster N, Nastainczyk W, Montenarh M (1999) Protein kinase CK2 interacts with a multi-protein binding domain of p53. Mol Cell Biochem 191:111–120. doi: 10.1023/A:1006886727248 PubMedCrossRefGoogle Scholar
  97. 97.
    Bren GD, Pennington KN, Paya CV (2000) PKC-zeta-associated CK2 participates in the turnover of free IkappaBalpha. J Mol Biol 297:1245–1258. doi: 10.1006/jmbi.2000.3630 PubMedCrossRefGoogle Scholar
  98. 98.
    Bojanowski K, Filhol O, Cochet C, Chambaz EM, Larsen AK (1993) DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem 268:22920–22926PubMedGoogle Scholar
  99. 99.
    Leroy D, Alghisi GC, Roberts E, Filhol-Cochet O, Gasser SM (1999) Mutations in the C-terminal domain of topoisomerase II affect meiotic function and interaction with the casein kinase 2 beta subunit. Mol Cell Biochem 191:85–95. doi: 10.1023/A:1006858210835 PubMedCrossRefGoogle Scholar
  100. 100.
    Park GH, Lee YT, Bae YS (2001) Stimulation of human topoisomerase II activity by its direct association with the beta subunit of protein kinase CKII. Mol Cells 11:82–88PubMedGoogle Scholar
  101. 101.
    Ritt DA, Zhou M, Conrads TP, Veenstra TC, Copeland TD, Morrison DK (2007) CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol 17:179–184. doi: 10.1016/j.cub.2006.11.061 PubMedCrossRefGoogle Scholar
  102. 102.
    Bird TA, Schooley K, Dower SK, Hagen H, Virca GD (1997) Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 272:2606–32612. doi: 10.1074/jbc.272.51.32606 CrossRefGoogle Scholar
  103. 103.
    Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275:32592–32597. doi: 10.1074/jbc.M001358200 PubMedCrossRefGoogle Scholar
  104. 104.
    Greer SF, Wang Y, Raman C, Justement LB (2001) CD45 function is regulated by an acidic 19-amino acid insert in domain II that serves as a binding and phosphoacceptor site for casein kinase 2. J Immunol 166:7281–7218Google Scholar
  105. 105.
    Wada T, Takagi T, Yamaguchi Y, Kawase H, Hiramoto M, Ferdous A et al (1996) Copurification of casein kinase II with transcription factor ATF/E4TF3. Nucleic Acids Res 24:876–884. doi: 10.1093/nar/24.5.876 PubMedCrossRefGoogle Scholar
  106. 106.
    Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (1998) Casein kinase II interacts with the bZIP domains of several transcription factors. Nucleic Acids Res 26:3854–3861. doi: 10.1093/nar/26.16.3854 PubMedCrossRefGoogle Scholar
  107. 107.
    Meggio F, Negro A, Sarno S, Ruzzene M, Bertoli A, Sorgato MC et al (2000) Bovine prion protein as a modulator of protein kinase CK2. Biochem J 352:191–196. doi: 10.1042/0264-6021:3520191 PubMedCrossRefGoogle Scholar
  108. 108.
    Grein S, Pyerin W (1999) BTF3 is a potential new substrate of protein kinase CK2. Mol Cell Biochem 191:121–128. doi: 10.1023/A:1006806226764 PubMedCrossRefGoogle Scholar
  109. 109.
    Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F et al (2003) Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: effects on CK2alpha activity. Biochem J 375:623–631. doi: 10.1042/BJ20030915 PubMedCrossRefGoogle Scholar
  110. 110.
    Son MY, Park JW, Kim YS, Kang SW, Marsha DR, Park W et al (1999) Protein kinase CKII interacts with and phosphorylates the SAG protein containing ring-H2 finger motif. Biochem Biophys Res Commun 263:743–748. doi: 10.1006/bbrc.1999.1460 PubMedCrossRefGoogle Scholar
  111. 111.
    Kim YS, Lee JY, Son MY, Park W, Bae YS (2003) Phosphorylation of threonine 10 on CKBBP1/SAG/ROC2/Rbx2 by protein kinase CKII promotes the degradation of IkappaBalpha and p27Kip1. J Biol Chem 278:28462–28469. doi: 10.1074/jbc.M302584200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations