Advertisement

Molecular and Cellular Biochemistry

, Volume 316, Issue 1–2, pp 99–106 | Cite as

Transcription factor TAFII250 phosphorylates the acidic domain of Mdm2 through recruitment of protein kinase CK2

  • Nerea Allende-Vega
  • Lynsey McKenzie
  • David Meek
Article

Abstract

Induction and activation of the p53 tumour suppressor protein occurs in response to a number of cellular stresses, including disruption of RNA polymerase II-mediated transcription. Both p53 itself and its principle negative regulator, the E3 ubiquitin ligase Mdm2, are substrates for phosphorylation by the protein kinase CK2 in vitro. CK2 phosphorylates Mdm2 within its central acidic domain, a region that is critical for making a second point of contact with p53 and mediating p53 ubiquitylation and turnover. Additionally, there is evidence that CK2 interacts with, and regulates, both p53 and Mdm2 within the cell but the molecular mechanisms through which CK2-mediated regulation of the p53 response can occur are only poorly understood. Previously, we showed that the basal transcription factor TAFII250, a critical component of TFIID, can interact with Mdm2 and promote the association of the Mdm2 acidic domain with p53. In the present study, we show that immunoprecipitates of TAFII250, either from mammalian cell extracts or from baculovirus-infected cells expressing elevated levels of HA-tagged TAFII250, can phosphorylate Mdm2 in vitro within its acidic domain. We show that CK2 is tightly associated with TAFII250 and is the principal activity responsible for TAFII250-mediated phosphorylation of Mdm2. Our data fit with recent observations that phosphorylation of the acidic domain of Mdm2 stimulates its association with p53 and are consistent with a model in which recruitment of CK2 by TAFII250 may play a contributory role in the maintenance of Mdm2 phosphorylation and function.

Keywords

Mdm2 CK2 Phosphorylation p53 TAFII250 

Notes

Acknowledgements

We are grateful to Frank Sauer and Tobias Maile for providing us with baculovirus encoding HA-tagged human TAFII250. This study was supported by funding from the Association for International Cancer Research.

References

  1. 1.
    Ljungman M, Lane DP (2004) Transcription—guarding the genome by sensing DNA damage. Nat Rev Cancer 4:727–737. doi: 10.1038/nrc1435 PubMedCrossRefGoogle Scholar
  2. 2.
    Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604. doi: 10.1038/nrc864 PubMedCrossRefGoogle Scholar
  3. 3.
    Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 28:1317–1322. doi: 10.1093/carcin/bgi122 CrossRefGoogle Scholar
  4. 4.
    Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951. doi: 10.1074/jbc.275.12.8945 PubMedCrossRefGoogle Scholar
  5. 5.
    Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476. doi: 10.1038/sj.onc.1203464 PubMedCrossRefGoogle Scholar
  6. 6.
    Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58. doi: 10.1016/S1044-579X(02)00099-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Ashcroft M, Taya Y, Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20:3224–3233. doi: 10.1128/MCB.20.9.3224-3233.2000 PubMedCrossRefGoogle Scholar
  8. 8.
    Argentini M, Barboule N, Wasylyk B (2001) The contribution of the acidic domain of MDM2 to p53 and MDM2 stability. Oncogene 20:1267–1275. doi: 10.1038/sj.onc.1204241 PubMedCrossRefGoogle Scholar
  9. 9.
    Kawai H, Wiederschain D, Yuan Z-M (2003) Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 23:4939–4947. doi: 10.1128/MCB.23.14.4939-4947.2003 PubMedCrossRefGoogle Scholar
  10. 10.
    Meulmeester E, Frenk R, Stad R, de Graaf P, Marine J-C, Vousden KH et al (2003) Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol Cell Biol 23:4929–4938. doi: 10.1128/MCB.23.14.4929-4938.2003 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu Q, Yao J, Wani G, Wani MA, Wani AA (2001) Mdm2 mutant defective in binding p300 promotes ubiquitination but not degradation of p53: evidence for the role of p300 in integrating ubiquitination and proteolysis. J Biol Chem 276:29695–29701. doi: 10.1074/jbc.M102634200 PubMedCrossRefGoogle Scholar
  12. 12.
    Blattner C, Hay TJ, Meek DW, Lane DP (2002) Hypophosphorylation of Mdm2 augments p53 stability. Mol Cell Biol 22:6170–6182. doi: 10.1128/MCB.22.17.6170-6182.2002 PubMedCrossRefGoogle Scholar
  13. 13.
    Kulikov R, Winter M, Blattner C (2006) Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J Biol Chem 281:28575–28583. doi: 10.1074/jbc.M513311200 PubMedCrossRefGoogle Scholar
  14. 14.
    Shimizu H, Burch LR, Smith AJ, Dornan D, Wallace M, Ball KL et al (2002) The conformationally flexible S9–S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J Biol Chem 277:28446–28458. doi: 10.1074/jbc.M202296200 PubMedCrossRefGoogle Scholar
  15. 15.
    Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL (2006) Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23:251–263. doi: 10.1016/j.molcel.2006.05.029 PubMedCrossRefGoogle Scholar
  16. 16.
    Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR (2006) The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci USA 103:1227–1232. doi: 10.1073/pnas.0510343103 PubMedCrossRefGoogle Scholar
  17. 17.
    Allende-Vega N, Saville MK, Meek DW (2007) Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53. Oncogene 26:4234–4242. doi: 10.1038/sj.onc.1210209 PubMedCrossRefGoogle Scholar
  18. 18.
    Meek DW, Knippschild U (2003) Post-translational modification of Mdm2. Mol Cancer Res 1:1017–1026PubMedGoogle Scholar
  19. 19.
    Hay TJ, Meek DW (2000) Multiple sites of in vivo phosphorylation in the MDM2 oncoprotein cluster within two important functional domains. FEBS Lett 478:183–186. doi: 10.1016/S0014-5793(00)01850-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Allende-Vega N, Dias S, Milne D, Meek D (2005) Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2. Mol Cell Biochem 274:85–90. doi: 10.1007/s11010-005-3074-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Gotz C, Kartarius S, Scholtes P, Nastainczyk W, Montenarh M (1999) Identification of a CK2 phosphorylation site in mdm2. Eur J Biochem 266:493–501. doi: 10.1046/j.1432-1327.1999.00882.x PubMedCrossRefGoogle Scholar
  22. 22.
    Hjerrild M, Milne D, Dumaz N, Hay T, Issinger OG, Meek D (2001) Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochem J 355:347–356. doi: 10.1042/0264-6021:3550347 PubMedCrossRefGoogle Scholar
  23. 23.
    Kulikov R, Boehme KA, Blattner C (2005) Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol 25:7170–7180. doi: 10.1128/MCB.25.16.7170-7180.2005 PubMedCrossRefGoogle Scholar
  24. 24.
    Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C et al (2004) Protein kinase CK1-delta phosphorylates key sites in the acidic domain of Mdm2 that regulate p53 turnover. Biochemistry 43:16356–16364. doi: 10.1021/bi0489255 PubMedCrossRefGoogle Scholar
  25. 25.
    Wasserman DA, Sauer F (2001) TAFII250: a transcriptional toolbox. J Cell Sci 114:2895–2902Google Scholar
  26. 26.
    O’Brien T, Tjian R (1998) Functional analysis of the human TAFII250 N-terminal kinase domain. Mol Cell 1:905–911. doi: 10.1016/S1097-2765(00)80089-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Dikstein R, Ruppert S, Tjian R (1996) TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84:781–790. doi: 10.1016/S0092-8674(00)81055-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52. doi: 10.1126/science.3291115 PubMedCrossRefGoogle Scholar
  29. 29.
    Li HH, Li AG, Sheppard HM, Liu X (2004) Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol Cell 13:867–878. doi: 10.1016/S1097-2765(04)00123-6 PubMedCrossRefGoogle Scholar
  30. 30.
    Buchmann AM, Skaar JR, DeCaprio JA (2004) Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol Cell Biol 24:5332–5339. doi: 10.1128/MCB.24.12.5332-5339.2004 PubMedCrossRefGoogle Scholar
  31. 31.
    Wasylyk C, Wasylyk B (2000) Defect in the p53-Mdm2 autoregulatory loop resulting from inactivation of TAF(II)250 in cell cycle mutant tsBN462 cells. Mol Cell Biol 20:5554–5570. doi: 10.1128/MCB.20.15.5554-5570.2000 PubMedCrossRefGoogle Scholar
  32. 32.
    Leveillard T, Wasylyk B (1997) The Mdm2 C-terminal region binds TAFII250 and is required for Mdm2 regulation of the cyclin A promoter. J Biol Chem 272:30651–30661. doi: 10.1074/jbc.272.49.30651 PubMedCrossRefGoogle Scholar
  33. 33.
    Filhol O, Martiel J-L, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355. doi: 10.1038/sj.embor.7400115 PubMedCrossRefGoogle Scholar
  34. 34.
    Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. doi: 10.1042/BJ20021469 PubMedCrossRefGoogle Scholar
  35. 35.
    Burch L, Scott M, Pohler E, Meek D, Hupp T (2004) Phage-peptide display identifies the death-activated protein kinase family as a novel modifier of the p53-inducible gene products MDM2 and p21WAF1. J Mol Biol 337:115–128. doi: 10.1016/j.jmb.2003.10.081 PubMedCrossRefGoogle Scholar
  36. 36.
    Kurki S, Peltonen K, Kiviharju T, Latonen L, Ojala P, Meek D et al (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465–475. doi: 10.1016/S1535-6108(04)00110-2 PubMedCrossRefGoogle Scholar
  37. 37.
    Solow S, Salunek M, Ryan R, LP M (2001) TAF(II)250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 276:15886–15892. doi: 10.1074/jbc.M009385200 PubMedCrossRefGoogle Scholar
  38. 38.
    Cabrejos ME, Allende CC, Maldonaldo E (2004) Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery. J Cell Biochem 93:2–10. doi: 10.1002/jcb.20209 PubMedCrossRefGoogle Scholar
  39. 39.
    Maldonado E, Allende JE (1999) Phosphorylation of yeast TBP by protein kinase CK2 reduces its specific binding to DNA. FEBS Lett 443:256–260. doi: 10.1016/S0014-5793(98)01734-7 PubMedCrossRefGoogle Scholar
  40. 40.
    Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H et al (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292. doi: 10.1016/S1097-2765(01)00176-9 PubMedCrossRefGoogle Scholar
  41. 41.
    Daya-Makin M, Sanghera JS, Mogentale TL, Lipp M, Parchomchuk J, Hogg JC et al (1994) Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res 54:2262–2268PubMedGoogle Scholar
  42. 42.
    Faust RA, Gapany M, Tristani P, Davis A, Adams GL, Ahmed K (1996) Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett 101:31–35. doi: 10.1016/0304-3835(96)04110-9 PubMedCrossRefGoogle Scholar
  43. 43.
    Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20:3247–3257. doi: 10.1038/sj.onc.1204411 PubMedCrossRefGoogle Scholar
  44. 44.
    Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger OG (1994) Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun 202:141–147. doi: 10.1006/bbrc.1994.1904 PubMedCrossRefGoogle Scholar
  45. 45.
    Yenice S, Davis AT, Gouelli SA, Akdas A, Limas C, Ahmed K (1994) Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24:11–16. doi: 10.1002/pros.2990240105 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Nerea Allende-Vega
    • 1
  • Lynsey McKenzie
    • 1
  • David Meek
    • 1
  1. 1.Biomedical Research CentreNinewells Hospital, University of DundeeDundeeUK

Personalised recommendations