Advertisement

Molecular and Cellular Biochemistry

, Volume 316, Issue 1–2, pp 163–167 | Cite as

CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo

  • Silvio E. Perea
  • Osvaldo Reyes
  • Idania Baladron
  • Yasser Perera
  • Hernán Farina
  • Jeovanis Gil
  • Arielis Rodriguez
  • Dania Bacardi
  • Jose L. Marcelo
  • Karelia Cosme
  • Marisol Cruz
  • Carmen Valenzuela
  • Pedro A. López-Saura
  • Yaquelin Puchades
  • Joem M. Serrano
  • Osmani Mendoza
  • Lila Castellanos
  • Aniel Sanchez
  • Lazaro Betancourt
  • Vladimir Besada
  • Ricardo Silva
  • Ernesto López
  • Viviana Falcón
  • Ignacio Hernández
  • Margarita Solares
  • Agueda Santana
  • Alina Díaz
  • Thelvia Ramos
  • Carlos López
  • Juan Ariosa
  • Luis J. González
  • Hilda Garay
  • Daniel Gómez
  • Roberto Gómez
  • Daniel F. Alonso
  • Hugo Sigman
  • Luis Herrera
  • Boris Acevedo
Article

Abstract

Protein Kinase CK2 is a serine-threonine kinase frequently deregulated in many human tumors. Here, we hypothesized that a peptide binder to the CK2 phosphoacceptor site could exhibit anticancer properties in vitro, in tumor animal models, and in cancer patients. By screening a random cyclic peptide phage display library, we identified the CIGB-300 (formerly P15-Tat), a cyclic peptide which abrogates the CK2 phosphorylation by blocking recombinant substrates in vitro. Interestingly, synthetic CIGB-300 led to a dose-dependent antiproliferative effect in a variety of tumor cell lines and induced apoptosis as evidenced by rapid caspase activation. Importantly, CIGB-300 elicited significant antitumor effect both by local and systemic administration in murine syngenic tumors and human tumors xenografted in nude mice. Finally, we performed a First-in-Man trial with CIGB 300 in patients with cervical malignancies. The peptide was found to be safe and well tolerated in the dose range studied. Likewise, signs of clinical benefit were clearly identified after the CIGB-300 treatment as evidenced by significant decrease of the tumor lesion area and histological examination. Our results provide an early proof-of-principle of clinical benefit by using an anti-CK2 approach in cancer. Furthermore, this is the first clinical trial where an investigational drug has been used to target the CK2 phosphorylation domain.

Keywords

Casein kinase 2 Apoptosis Cancer targeted therapy 

Notes

Acknowledgements

This work was supported by HeberBiotec SA and Biorec.

References

  1. 1.
    Baselga J (2006) Targeting tyrosine kinases in cancer. Science 312:1175–1178. doi: 10.1126/science.1125951 PubMedCrossRefGoogle Scholar
  2. 2.
    Kantarjian HM, Cortes J (2006) New strategies in chronic myeloid leukemia. Int J Hematol 83:289–293. doi: 10.1532/IJH97.06024 PubMedCrossRefGoogle Scholar
  3. 3.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi: 10.1096/fj.02-0473rev PubMedCrossRefGoogle Scholar
  4. 4.
    Johnston IM, Allison SJ, Morton JP, Schramm L, Scott P, White RJ (2002) CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells. Mol Cell Biol 22:3757–3768. doi: 10.1128/MCB.22.11.3757-3768.2002 PubMedCrossRefGoogle Scholar
  5. 5.
    Guerra B, Issinger O-G (1999) Protein kinase CK2 and its role in cellular proliferation, development, and pathology. Electrophoresis 20:391–408. doi:10.1002/(SICI)1522-2683(19990201)20:2≤391::AID-ELPS391≥3.0.CO;2-NGoogle Scholar
  6. 6.
    Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230. doi: 10.1016/S0962-8924(02)02279-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Barz T, Ackermann K, Dubois G, Eils R, Pyerin W (2003) Genome-wide expression screens indicate a global role for protein kinase CK2 in chromatin remodeling. J Cell Sci 116:1563–1577. doi: 10.1242/jcs.00352 PubMedCrossRefGoogle Scholar
  8. 8.
    Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108:1698–1707. doi: 10.1182/blood-2005-11-013672 PubMedCrossRefGoogle Scholar
  9. 9.
    Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) P53 deficiency and misexpression of protein kinase CK2α collaborate in the development of thymic lymphomas in mice. Oncogene 16:2965–2974. doi: 10.1038/sj.onc.1201854 PubMedCrossRefGoogle Scholar
  10. 10.
    Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE et al (2001) Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem 227:153–165. doi: 10.1023/A:1013108822847 PubMedCrossRefGoogle Scholar
  11. 11.
    Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16:573–582PubMedGoogle Scholar
  12. 12.
    Faust RA, Gapany M, Tristani P, Davis A, Adams GL, Ahmed K (1996) Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett 101:31–35. doi: 10.1016/0304-3835(96)04110-9 PubMedCrossRefGoogle Scholar
  13. 13.
    Serno S, Salvi M, Battistutta R, Zanotti G, Pinna LA (2005) Features and potentials of ATP-site directed CK2 inhibitors. Biochim Biophys Acta 1754:263–270Google Scholar
  14. 14.
    Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2:712–720PubMedGoogle Scholar
  15. 15.
    Perea SE, Reyes O, Puchades Y, Mendoza O, Vispo NS, Torrens I et al (2004) Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the Casein Kinase 2 (CK2). Cancer Res 64:7127–7129. doi: 10.1158/0008-5472.CAN-04-2086 PubMedCrossRefGoogle Scholar
  16. 16.
    Fields R (1990) Nobel, Solid phase peptide synthesis utilizing 9-fluorenylmethoxycabonyl amino acid. Int J Pept Protein Res 35:161–214PubMedGoogle Scholar
  17. 17.
    Perera Y, Farina HG, Hernández I, Mendoza O, Serrano JM, Reyes O et al (2008) Systemic administration of a peptide that impairs the Protein Kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int J Cancer 122:57–62. doi: 10.1002/ijc.23013 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Silvio E. Perea
    • 1
  • Osvaldo Reyes
    • 1
  • Idania Baladron
    • 1
  • Yasser Perera
    • 1
  • Hernán Farina
    • 7
  • Jeovanis Gil
    • 1
  • Arielis Rodriguez
    • 1
  • Dania Bacardi
    • 1
  • Jose L. Marcelo
    • 1
  • Karelia Cosme
    • 1
  • Marisol Cruz
    • 1
  • Carmen Valenzuela
    • 1
  • Pedro A. López-Saura
    • 1
  • Yaquelin Puchades
    • 1
  • Joem M. Serrano
    • 1
  • Osmani Mendoza
    • 1
  • Lila Castellanos
    • 1
  • Aniel Sanchez
    • 1
  • Lazaro Betancourt
    • 1
  • Vladimir Besada
    • 1
  • Ricardo Silva
    • 1
  • Ernesto López
    • 1
  • Viviana Falcón
    • 1
  • Ignacio Hernández
    • 1
  • Margarita Solares
    • 2
  • Agueda Santana
    • 3
  • Alina Díaz
    • 5
  • Thelvia Ramos
    • 1
  • Carlos López
    • 5
  • Juan Ariosa
    • 4
  • Luis J. González
    • 1
  • Hilda Garay
    • 1
  • Daniel Gómez
    • 7
  • Roberto Gómez
    • 6
  • Daniel F. Alonso
    • 7
  • Hugo Sigman
    • 6
  • Luis Herrera
    • 1
  • Boris Acevedo
    • 1
  1. 1.Center for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
  2. 2.Gyneco-obstetric Hospital “Clodomira Acosta Ferrales”HavanaCuba
  3. 3.Gyneco-obstetric Hospital “10 de Octubre”HavanaCuba
  4. 4.Gyneco-obstetric Hospital “América Arias”HavanaCuba
  5. 5.National Center for ToxicologyHavanaCuba
  6. 6.ELEA LaboratoriosBuenos AiresArgentina
  7. 7.National University of QuilmesBuenos AiresArgentina

Personalised recommendations