Skip to main content
Log in

Oxidative stress plays a permissive role in α2-adrenoceptor-mediated events in immortalized SHR proximal tubular epithelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study evaluated the role of oxidative stress on α2-adrenoceptor-mediated events (Cl/HCO 3 exchanger activity and cAMP accumulation) in immortalized renal proximal tubular epithelial (PTE) cells from the spontaneously hypertensive rat (SHR) and its normotensive control (Wistar Kyoto rat; WKY). The exposure of cells to α2-adrenoceptor agonist UK 14,304 reduced Cl/HCO 3 exchanger activity with EC50 of 2.0 μM in SHR PTE cells, whereas in WKY PTE cells no effects were observed. These effects were abolished by yohimbine, an α2-adrenoceptor antagonist, but insensitive to prazosin. Both forskolin and dibutyryl cAMP stimulated Cl/HCO 3 exchanger activity in WKY and SHR PTE cells, which was prevented by the PKA inhibitor H-89. Forskolin increased cAMP levels in both WKY and SHR PTE cells to a similar extent, but UK 14,304 significantly reduced the forskolin-induced increase in cAMP levels in only SHR PTE cells. Immunoblotting showed that expression of α2B-adrenoceptors was 12-times greater in SHR PTE cells than in WKY PTE cells. SHR PTE cells have increased levels of H2O2 and overexpress type 2 NADPH oxidase (NOX2) and p22phox compared with WKY cells. In SHR PTE cells, the NADPH oxidase inhibitor apocynin reduced their increased ability to generate H2O2 and abolished the inhibitory effects of UK 14,304 on Cl/HCO 3 exchanger activity and cAMP accumulation. It is concluded that differences between WKY and SHR PTE cells on their sensitivity to α2-adrenoceptor agonists correlate with the expression of α2B-adrenoceptors. The increased generation of H2O2 amplifies the response downstream to α2-adrenoceptor activation in SHR PTE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr (1972) Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med 52:584–594. doi:10.1016/0002-9343(72)90050-2

    Article  PubMed  CAS  Google Scholar 

  2. DiBona GF (2005) Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289:R633–R641

    PubMed  CAS  Google Scholar 

  3. Kanagy NL (2005) Alpha2-adrenergic receptor signalling in hypertension. Clin Sci (Lond) 109:431–437

    Article  CAS  Google Scholar 

  4. Gesek FA (1999) Alpha1-and alpha2-adrenoceptor control of sodium transport reverses in developing hypertension. Hypertension 33:524–529

    PubMed  CAS  Google Scholar 

  5. Rossier BC, Palmer LG (1992) Mechanisms of aldosterone action on sodium and potassium transport. In: Seldin DW (ed) The kidney, physiology and pathophysiology. Raven Press Publishers, New York, pp 1373–1409

    Google Scholar 

  6. Verrey F (1995) Transcriptional control of sodium transport in tight epithelial by adrenal steroids. J Membr Biol 144:93–110

    PubMed  CAS  Google Scholar 

  7. Aronson PS, Giebisch G (1997) Mechanisms of chloride transport in the proximal tubule. Am J Physiol Renal Physiol 273:F179-F192

    CAS  Google Scholar 

  8. Dart C, Vaughan-Jones RD (1992) Na+–HCO 3 symport in the sheep cardiac Purkinje fibre. J Physiol 451:365–385

    PubMed  CAS  Google Scholar 

  9. Gomes P, Vieira-Coelho MA, Soares-Da-Silva P (2001) Ouabain-insensitive acidification by dopamine in renal OK cells: primary control of the Na+/H+ exchanger. Am J Physiol Regul Integr Comp Physiol 281:R10-R18

    PubMed  CAS  Google Scholar 

  10. Lazdunski M, Frelin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042

    Article  PubMed  CAS  Google Scholar 

  11. Xu P, Spitzer KW (1994) Na-independent ClHCO 3 exchange mediates recovery of pHi from alkalosis in guinea pig ventricular myocytes. Am J Physiol 267:H85–H91

    PubMed  CAS  Google Scholar 

  12. Krapf R, Alpern RJ (1993) Cell pH and transepithelial H/HCO3 transport in the renal proximal tubule. J Membr Biol 131:1–10

    Article  PubMed  CAS  Google Scholar 

  13. Soleimani M, Singh G (1995) Physiologic and molecular aspects of the Na+/H+ exchangers in health and disease processes. J Investig Med 43:419–430

    PubMed  CAS  Google Scholar 

  14. Alpern RJ (1990) Cell mechanisms of proximal tubule acidification. Physiol Rev 70:79–114

    PubMed  CAS  Google Scholar 

  15. Hara C, Satoh H, Usui T, Kunimi M, Noiri E, Tsukamoto K, Taniguchi S, Uwatoko S, Goto A, Racusen LC, Inatomi J, Endou H, Fujita T, Seki G (2000) Intracellular pH regulatory mechanism in a human renal proximal cell line (HKC-8): evidence for Na+/H+ exchanger, CI/HCO 3 exchanger and Na+–HCO 3 cotransporter. Pflugers Arch 440:713–20

    Article  PubMed  CAS  Google Scholar 

  16. Petrovic S, Ma L, Wang Z, Soleimani M (2003) Identification of an apical Cl/HCO 3 exchanger in rat kidney proximal tubule. Am J Physiol Cell Physiol 285:C608-C617

    PubMed  CAS  Google Scholar 

  17. Soleimani M, Burnham CE (2000) Physiologic and molecular aspects of the Na+:HCO 3 cotransporter in health and disease processes. Kidney Int 57:371–384

    Article  PubMed  CAS  Google Scholar 

  18. Pedrosa R, Jose PA, Soares-da-Silva P (2004) Defective D1-like receptor-mediated inhibition of the Cl/HCO 3 exchanger in immortalized SHR proximal tubular epithelial cells. Am J Physiol Renal Physiol 286:F1120–F1126

    Article  PubMed  CAS  Google Scholar 

  19. Makino A, Skelton MM, Zou AP, Cowley AW Jr (2003) Increased renal medullary H2O2 leads to hypertension. Hypertension 42:25–30

    Article  PubMed  CAS  Google Scholar 

  20. Minuz P, Patrignani P, Gaino S, Degan M, Menapace L, Tommasoli R, Seta F, Capone ML, Tacconelli S, Palatresi S, Bencini C, Del Vecchio C, Mansueto G, Arosio E, Santonastaso CL, Lechi A, Morganti A, Patrono C (2002) Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 106:2800–2805

    Article  PubMed  CAS  Google Scholar 

  21. Schnackenberg CG, Welch WJ, Wilcox CS (1998) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32:59–64

    PubMed  CAS  Google Scholar 

  22. Vaziri ND, Ni Z, Oveisi F, Trnavsky-Hobbs DL (2000) Effect of antioxidant therapy on blood pressure and NO synthase expression in hypertensive rats. Hypertension 36:957–964

    PubMed  CAS  Google Scholar 

  23. Adler S, Huang H (2004) Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase. Am J Physiol Renal Physiol 287:F907–F913

    Article  PubMed  CAS  Google Scholar 

  24. de Cavanagh EM, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F (2006) Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. Am J Physiol Regul Integr Comp Physiol 290:R1616–R1625

    PubMed  Google Scholar 

  25. Sullivan JC, Sasser JM, Pollock JS (2006) Sexual Dimorphism in oxidant status in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 292:R764–R768

    PubMed  Google Scholar 

  26. Woost PG, Orosz DE, Jin W, Frisa PS, Jacobberger JW, Douglas JG, Hopfer U (1996) Immortalization and characterization of proximal tubule cells derived from kidneys of spontaneously hypertensive and normotensive rats. Kidney Int 50:125–134

    Article  PubMed  CAS  Google Scholar 

  27. Gomes P, Soares-da-Silva P (2002) Na+/H+ exchanger activity and dopamine D1-like receptor function in two opossum kidney cell clonal sublines. Cell Physiol Biochem 12:259–268

    Article  PubMed  CAS  Google Scholar 

  28. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  29. Fraga S, Luo Y, Jose P, Zandi-Nejad K, Mount DB, Soares-da-Silva P (2006) Dopamine D1-like receptor-mediated inhibition of Cl/HCO 3 exchanger activity in rat intestinal epithelial IEC-6 cells is regulated by G protein-coupled receptor kinase 6 (GRK 6). Cell Physiol Biochem 18:347–360

    Article  PubMed  CAS  Google Scholar 

  30. Yingst DR, Massey KJ, Rossi NF, Mohanty MJ, Mattingly RR (2004) Angiotensin II directly stimulates activity and alters the phosphorylation of Na–K-ATPase in rat proximal tubule with a rapid time course. Am J Physiol Renal Physiol 287:F713–F721

    Article  PubMed  CAS  Google Scholar 

  31. Gesek FA, Schoolwerth AC (1990) Hormonal interactions with the proximal Na+–H+ exchanger. Am J Physiol 258:F514–F521

    PubMed  CAS  Google Scholar 

  32. Gesek FA, Strandhoy JW (1990) Dual interactions between alpha2-adrenoceptor agonists and the proximal Na+–H+ exchanger. Am J Physiol 258:F636–F642

    PubMed  CAS  Google Scholar 

  33. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  34. Anand-Srivastava MB (1993) Platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein. Relation with adenylyl cyclase activity. Circ Res 73:1032–1039

    PubMed  CAS  Google Scholar 

  35. Brodde OE, Michel MC (1992) Adrenergic receptors and their signal transduction mechanisms in hypertension. J Hypertens Suppl 10:S133–S145

    Article  PubMed  CAS  Google Scholar 

  36. Khalid M, Ilhami N, Giudicelli Y, Dausse JP (2002) Testosterone dependence of salt-induced hypertension in Sabra rats and role of renal alpha2-adrenoceptor subtypes. J Pharmacol Exp Ther 300:43–49

    Article  PubMed  CAS  Google Scholar 

  37. Stanko CK, Smyth DD (1991) Proximal tubular alpha 2-adrenoceptor density in the spontaneously hypertensive rat. Am J Hypertens 4:64–67

    PubMed  CAS  Google Scholar 

  38. Umemura S, Marver D, Smyth DD, Pettinger WA (1985) Alpha2-adrenoceptors and cellular cAMP levels in single nephron segments from the rat. Am J Physiol Renal Fluid Electrolyte Physiol 249:F28–F33

    CAS  Google Scholar 

  39. Murphy TJ, Bylund DB (1988) Characterization of alpha2-adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 244:571–578

    PubMed  CAS  Google Scholar 

  40. Asghar M, Banday AA, Fardoun RZ, Lokhandwala MF (2006) Hydrogen peroxide causes uncoupling of dopamine D1-like receptors from G proteins via a mechanism involving protein kinase C and G-protein-coupled receptor kinase 2. Free Radic Biol Med 40:13–20

    Article  PubMed  CAS  Google Scholar 

  41. Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT, Fujita T, Welch WJ, Wilcox CS (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39:269–274

    Article  PubMed  CAS  Google Scholar 

  42. Zhan CD, Sindhu RK, Vaziri ND (2004) Up-regulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation. Kidney Int 65:219–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Fundação para a Ciência e a Tecnologia, POCI, FEDER and Programa Comunitário de Apoio (POCI/SAU-FCF/59207/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrício Soares-da-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simão, S., Fraga, S., Jose, P.A. et al. Oxidative stress plays a permissive role in α2-adrenoceptor-mediated events in immortalized SHR proximal tubular epithelial cells. Mol Cell Biochem 315, 31–39 (2008). https://doi.org/10.1007/s11010-008-9785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9785-6

Keywords

Navigation