Molecular and Cellular Biochemistry

, Volume 311, Issue 1–2, pp 145–156 | Cite as

Inhibitory effects of short-term administration of dl-α-lipoic acid on oxidative vulnerability induced by Aβ amyloid fibrils (25–35) in mice

  • E. Philip Jesudason
  • J. Gunasingh Masilamoni
  • Ben S. Ashok
  • B’joe Baben
  • V. Arul
  • K. Samuel Jesudoss
  • W. Charles E. Jebaraj
  • S. Dhandayuthapani
  • S. Vignesh
  • R. Jayakumar


Aβ amyloid peptide is believed to induce oxidative stress leading to inflammation, which is postulated to play a significant role in the toxicity of Alzheimer’s disease (AD). This study was designed to investigate the inhibitory effects of dl-α lipoic acid (LA), a potential free radical scavenger, on oxidative vulnerability induced by intraperitoneal injection of Aβ25–35 amyloid fibrils in mice. Mice were divided into three groups: control, Aβ amyloid toxicity induced (AT), and LA treated (ATL). Blood Plasma was separated, liver, spleen and brain were dissected and analysis of oxidants, antioxidants, ATPases, glial fibrillary acidic protein (GFAP) and nuclear factor kappa-B (NFκB) were carried out. Results show biochemical parameters such as reactive oxygen species (ROS) and lipid peroxidation (LPO) were significantly lowered (P < 0.05) and levels of antioxidants and ATPase (P < 0.05) were significantly increased (P < 0.05) in hepatocytes, splenocytes and astrocytes of the ATL group. Moreover, our histological results revealed a decreased GFAP immunoreactivity in the neocortical region and NFκB immunoreactivity in neocortex, liver and spleen. This study reiterates LA as a potent free radical scavenger to combat oxidative vulnerability in the treatment for Aβ amyloid toxicity.


Aβ amyloid dl-α-lipoic acid Reactive oxygen species Enzymic and non-enzymic antioxidants ATPase Glial fibrillary acidic protein Nuclear factor kappa-B 



The authors Dr. E.P.J and Dr. J.G.M thank the Council of Scientific and Industrial Research (CSIR, New Delhi), India Dr. K.S.J and Dr. V.A thank the Indian Council of Medical Research, India, for awarding fellowships. We thank Dr. V. Titus George, Department of Pathology, Madras Veterinary College, Chennai, for his valuable assistance in histopathological evaluation.


  1. 1.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  2. 2.
    Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 18:S15–S21PubMedCrossRefGoogle Scholar
  3. 3.
    Mattson MP, Begley JG, Mark RJ, Furukawa K (1997) Abeta25–35 induces rapid lysis of red blood cells: contrast with Abeta1–42 and examination of underlying mechanisms. Brain Res 771:147–153PubMedCrossRefGoogle Scholar
  4. 4.
    Pratico D (2002) Alzheimer’s disease and oxygen radicals: new insights. Biochem Pharmacol 63:563–567PubMedCrossRefGoogle Scholar
  5. 5.
    Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105PubMedCrossRefGoogle Scholar
  6. 6.
    Naslund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, Silberring J, Gandy SE, Winblad B, Greengard P et al (1994) Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 91:8378–8382PubMedCrossRefGoogle Scholar
  7. 7.
    Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Roher AE (2001) Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276:12991–12998PubMedCrossRefGoogle Scholar
  8. 8.
    Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR (1999) Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. J Neurochem 73:1660–1666PubMedCrossRefGoogle Scholar
  9. 9.
    Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF (1997) The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem 174:193–197PubMedCrossRefGoogle Scholar
  10. 10.
    Hedin HL, Nilsson L, Fowler CJ (2001) Effects of staurosporine, U-73122, wortmannin, 4-hydroxynonenal and sodium azide upon the release of secreted beta-amyloid precursor protein from human platelets in response to thrombin stimulation. Mol Cell Biochem 219:145–152PubMedCrossRefGoogle Scholar
  11. 11.
    Jesudason EP, Masilamoni JG, Jesudoss KS, Jayakumar R (2005) The protective role of dl-alpha-lipoic acid in the oxidative vulnerability triggered by Abeta-amyloid vaccination in mice. Mol Cell Biochem 270:29–37PubMedCrossRefGoogle Scholar
  12. 12.
    Evans JL, Goldfine ID (2000) Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther 2:401–413PubMedCrossRefGoogle Scholar
  13. 13.
    Packer L, Roy S, Sen CK (1997) Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 38:79–101PubMedCrossRefGoogle Scholar
  14. 14.
    Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250PubMedCrossRefGoogle Scholar
  15. 15.
    Seaton TA, Jenner P, Marsden CD (1996) The isomers of thioctic acid alter C-deoxyglucose incorporation in rat basal ganglia. Biochem Pharmacol 51:983–986PubMedCrossRefGoogle Scholar
  16. 16.
    Pike CJ, Overman MJ, Cotman CW (1995) Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem 270:23895–23898PubMedCrossRefGoogle Scholar
  17. 17.
    Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932PubMedCrossRefGoogle Scholar
  18. 18.
    Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130PubMedCrossRefGoogle Scholar
  19. 19.
    Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554PubMedGoogle Scholar
  20. 20.
    Nielsen EH, Nybo M, Svehag SE (1999) Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol 309:491–496PubMedGoogle Scholar
  21. 21.
    Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Chacko J, Trump BF (1981) Mouse liver cell culture. I. Hepatocyte isolation. In Vitro 17:913–925PubMedGoogle Scholar
  22. 22.
    Taylor CG, Potter AJ, Rabinovitch PS (1997) Splenocyte glutathione and CD3-mediated cell proliferation are reduced in mice fed a protein-deficient diet. J Nutr 127:44–50PubMedGoogle Scholar
  23. 23.
    Abe K, Saito H (1996) Menadione toxicity in cultured rat cortical astrocytes. Jpn J Pharmacol 72:299–306PubMedCrossRefGoogle Scholar
  24. 24.
    Pereira C, Santos MS, Oliveira C (1999) Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: protection by antioxidants. Neurobiol Dis 6:209–219PubMedCrossRefGoogle Scholar
  25. 25.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  26. 26.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  27. 27.
    Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78PubMedGoogle Scholar
  28. 28.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  29. 29.
    Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140PubMedGoogle Scholar
  30. 30.
    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590PubMedCrossRefGoogle Scholar
  31. 31.
    Carlberg I, Sahlman L, Mannervik B (1985) The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase. FEBS Lett 180:102–106PubMedCrossRefGoogle Scholar
  32. 32.
    Fiske CH, Subbarow Y (1927) The nature of the “inorganic phosphate” in voluntary muscle. Science 65:401–403PubMedCrossRefGoogle Scholar
  33. 33.
    Martin BL, Tokheim AM, McCarthy PT, Doms BS, Davis AA, Armitage IM (2006) Metallothionein-3 and neuronal nitric oxide synthase levels in brains from the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Biochem 283:129–137PubMedCrossRefGoogle Scholar
  34. 34.
    Wisniewski T, Ghiso J, Frangione B (1997) Biology of A beta amyloid in Alzheimer’s disease. Neurobiol Dis 4:313–328PubMedCrossRefGoogle Scholar
  35. 35.
    Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116PubMedCrossRefGoogle Scholar
  36. 36.
    Wallace MN, Geddes JG, Farquhar DA, Masson MR (1997) Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Exp Neurol 144:266–272PubMedCrossRefGoogle Scholar
  37. 37.
    Vijayavel K, Anbuselvam C, Balasubramanian MP (2007) Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem 303:39–44PubMedCrossRefGoogle Scholar
  38. 38.
    Sudhahar V, Kumar SA, Varalakshmi P, Sundarapandiyan R (2007) Mitigating role of lupeol and lupeol linoleate on hepatic lipemic-oxidative injury and lipoprotein peroxidation in experimental hypercholesterolemia. Mol Cell Biochem 295:189–198PubMedCrossRefGoogle Scholar
  39. 39.
    Lovell MA, Xie C, Xiong S, Markesbery WR (2003) Protection against amyloid beta peptide and iron/hydrogen peroxide toxicity by alpha lipoic acid. J Alzheimers Dis 5:229–239PubMedGoogle Scholar
  40. 40.
    Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52PubMedCrossRefGoogle Scholar
  41. 41.
    Nagatomo Y, Yoshikawa T, Kohno T, Yoshizawa A, Anzai T, Meguro T, Satoh T, Ogawa S (2007) Effects of beta-blocker therapy on high sensitivity c-reactive protein, oxidative stress, and cardiac function in patients with congestive heart failure. J Card Fail 13:365–371PubMedCrossRefGoogle Scholar
  42. 42.
    Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391:499–510PubMedCrossRefGoogle Scholar
  43. 43.
    Han D, Tritschler HJ, Packer L (1995) Alpha-lipoic acid increases intracellular glutathione in a human T-lymphocyte Jurkat cell line. Biochem Biophys Res Commun 207:258–264PubMedCrossRefGoogle Scholar
  44. 44.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  45. 45.
    Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827PubMedCrossRefGoogle Scholar
  46. 46.
    Anderton B (1994) Free radicals on the mind. Hydrogen peroxide mediates amyloid beta protein toxicity. Hum Exp Toxicol 13:719PubMedGoogle Scholar
  47. 47.
    Busse E, Zimmer G, Schopohl B, Kornhuber B (1992) Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivo. Arzneimittelforschung 42:829–831PubMedGoogle Scholar
  48. 48.
    Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048PubMedCrossRefGoogle Scholar
  49. 49.
    Andersen JK (2001) Do alterations in glutathione and iron levels contribute to pathology associated with Parkinson’s disease? Novartis Found Symp 235:11–20; discussion 20–25PubMedGoogle Scholar
  50. 50.
    Escobar JA, Rubio MA, Lissi EA (1996) Sod and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radic Biol Med 20:285–290PubMedCrossRefGoogle Scholar
  51. 51.
    Alldinger S, Groters S, Miao Q, Fonfara S, Kremmer E, Baumgartner W (2006) Roles of an extracellular matrix (ECM) receptor and ECM processing enzymes in demyelinating canine distemper encephalitis. Dtsch Tierarztl Wochenschr 113:151–152, 154–156Google Scholar
  52. 52.
    Jesudason EP, Masilamoni JG, Kirubagaran R, Davis GD, Jayakumar R (2005) The protective role of dl-alpha-lipoic acid in biogenic amines catabolism triggered by Abeta amyloid vaccination in mice. Brain Res Bull 65:361–367PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang WJ, Wei H, Hagen T, Frei B (2007) Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc Natl Acad Sci USA 104:4077–4082PubMedCrossRefGoogle Scholar
  54. 54.
    Venkatraman MS, Chittiboyina A, Meingassner J, Ho CI, Varani J, Ellis CN, Avery MA, Pershadsingh HA, Kurtz TW, Benson SC (2004) Alpha-lipoic acid-based PPARgamma agonists for treating inflammatory skin diseases. Arch Dermatol Res 296:97–104PubMedCrossRefGoogle Scholar
  55. 55.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
  56. 56.
    Bird MA, Lange PA, Schrum LW, Grisham JW, Rippe RA, Behrns KE (2002) Cholestasis induces murine hepatocyte apoptosis and DNA synthesis with preservation of the immediate-early gene response. Surgery 131:556–563PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • E. Philip Jesudason
    • 1
  • J. Gunasingh Masilamoni
    • 1
  • Ben S. Ashok
    • 2
  • B’joe Baben
    • 2
  • V. Arul
    • 1
  • K. Samuel Jesudoss
    • 1
  • W. Charles E. Jebaraj
    • 3
  • S. Dhandayuthapani
    • 1
  • S. Vignesh
    • 1
  • R. Jayakumar
    • 1
    • 4
  1. 1.Bio-Organic and Neurochemistry LaboratoryCentral Leather Research InstituteChennaiIndia
  2. 2.Department of BiochemistrySri Ramachandra Medical College and Research Institute (Deemed University)ChennaiIndia
  3. 3.Department of BiotechnologySri Ramachandra Medical College and Research Institute (Deemed University)ChennaiIndia
  4. 4.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations