Skip to main content
Log in

A novel immunodetection screen for vacuolar defects identifies a unique allele of VPS35 in S. cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The late endosome and vacuole of yeast Saccharomyces cerevisiae are functionally equivalent to the mammalian late endosome and lysosome. The late endosome is the convergence point of the biosynthetic and endocytic trafficking to the vacuole. Here, we describe a novel immunodetection screen to isolate mutants defective in trafficking the soluble hydrolase carboxypeptidase Y (CPY) at the late endosome to vacuole interface (env mutants). Mutants exhibit vacuolar morphology and endocytosis defects as assayed by electron, fluorescent, and nomarski microscopy. In biochemical assays, they internally accumulate p2CPY in a dense membrane compartment lacking vacuolar properties yet display normal secretion phenotypes. The results suggest vacuolar morphology and function defects that are exclusively at the late endosome/vacuole interface. env mutants define five complementation groups. The first gene of the collection to be cloned, ENV1 is allelic to VPS35 whose established function is in retrograde trafficking from late endosome to trans-Golgi network (TGN). Microscopic, biochemical, and growth analyses establish that env1 is distinct from other alleles of VPS35 in vacuolar morphology, growth characteristics, and internal accumulation of p2CPY. Our results indicate that ENV genes may define new gene functions at the late endosome to vacuole interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jones EW, Webb GC, Hiller MA (1997) Molecular biology of the yeast Saccharomyces cerevisiae. vol. III, pp 363–469. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y

  2. Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    Article  PubMed  CAS  Google Scholar 

  3. Pelham HR (2002) Insights from yeast endosomes. Curr Opin Cell Biol 14:454–462

    Article  PubMed  CAS  Google Scholar 

  4. Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta 1744(3):438–454

    PubMed  CAS  Google Scholar 

  5. Luzio JP, Poupon V, Lindsay MR, et al (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20:141–154

    Article  PubMed  CAS  Google Scholar 

  6. Mullins C, Bonifacino JS (2001) The molecular machinery for lysosome biogenesis. Bioessays 23:333–343

    Article  PubMed  CAS  Google Scholar 

  7. Levine B (2005) Eating oneself and uninvited guests, autophagy-related pathways in cellular defense. Cell 120:159–162

    PubMed  CAS  Google Scholar 

  8. Ogier-Denis E, Codogno P (2003) Autophagy, a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128

    PubMed  CAS  Google Scholar 

  9. Shintani T, Klionsky DJ (2004) Autophagy in health and disease, a double-edged sword. Science 306:990–995

    Article  PubMed  CAS  Google Scholar 

  10. Babst M, Sato TK, Banta LM, Emr SD (1997) Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J 16:1820–1831

    Article  PubMed  CAS  Google Scholar 

  11. Conibear E, Stevens TH (1998) Multiple sorting pathways between the late golgi and the vacuole in yeast. Biochim Biophys Acta 1404:211–230

    Article  PubMed  CAS  Google Scholar 

  12. Piper RC, Cooper AA, Yang H, Stevens TH (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol 131:603–617

    Article  PubMed  CAS  Google Scholar 

  13. Rieder SE, Banta LM, Kohrer K, et al (1996) Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell 7:985–999

    PubMed  CAS  Google Scholar 

  14. Marcusson EG, Horazdovsky BF, Cereghino JL, et al (1994) The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586

    Article  PubMed  CAS  Google Scholar 

  15. Cooper AA, Stevens TH (1996) Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133:529–541

    Article  PubMed  CAS  Google Scholar 

  16. Horazdovsky BF, Davies BA, Seaman MN, et al (1997) A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 8:1529–1541

    PubMed  CAS  Google Scholar 

  17. Jones EW (1977) Proteinase mutants of Saccharomyces cerevisiae. Genetics 85:23–33

    PubMed  CAS  Google Scholar 

  18. Bankaitis VA, Johnson LM, Emr SD (1986) Isolation of yeast mutants defective in protein targeting to the vacuole. PNAS USA 83:9075–9079

    Article  PubMed  CAS  Google Scholar 

  19. Rothman JH, Stevens TH (1986) Protein sorting in yeast, mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47:1041–1051

    Article  PubMed  CAS  Google Scholar 

  20. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants, evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402

    PubMed  CAS  Google Scholar 

  21. Wada Y, Ohsumi Y, Anraku Y (1992) Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae . I. Isolation and characterization of two classes of vam mutants. J Biol Chem 267:18665–18670

    PubMed  CAS  Google Scholar 

  22. Sherman F, Fink GR, Lawrence LW (1979) Methods in yeast genetics. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  23. Gietz RD, Woods RA (1994) Molecular genetics of yeast, practical approaches. Oxford University Press, London

    Google Scholar 

  24. Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Article  PubMed  CAS  Google Scholar 

  25. Lyons S, Nelson N (1984) An immunological method for detecting gene expression in yeast colonies. PNAS USA 81:7426–7430

    Article  PubMed  CAS  Google Scholar 

  26. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets, procedure and some applications. PNAS USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  27. Klionsky DJ, Banta LM, Emr SD (1988) Intracellular sorting and processing of a yeast vacuolar hydrolase, proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8:2105–2116

    PubMed  CAS  Google Scholar 

  28. Johnson LM, Bankaitis VA, Emr SD (1987) Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48:875–885

    Article  PubMed  CAS  Google Scholar 

  29. Banta LM, Robinson JS, Klionsky DJ, Emr SD (1988) Organelle assembly in yeast, characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107:1369–1383

    Article  PubMed  CAS  Google Scholar 

  30. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  CAS  Google Scholar 

  31. Mayer A, Wickner W, Haas A (1996) Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85:83–94

    Article  PubMed  CAS  Google Scholar 

  32. Herman PK, Emr SD (1990) Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 10:6742–6754

    PubMed  CAS  Google Scholar 

  33. Nothwehr SF, Bruinsma P, Strawn LA (1999) Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol Biol Cell 10(4):875–890

    PubMed  CAS  Google Scholar 

  34. Paravicini G, Horazdovsky BF, Emr SD (1992) Alternative pathways for the sorting of soluble vacuolar proteins in yeast, a vps35 null mutant missorts and secretes only a subset of vacuolar hydrolases. Mol Biol Cell 3:415–427

    PubMed  CAS  Google Scholar 

  35. Conboy MJ, Cyert MS (2000) Luv1p/Rki1p/Tcs3p/Vps54p, a yeast protein that localizes to the late Golgi and early endosome, is required for normal vacuolar morphology. Mol Biol Cell 11(7):2429–2443

    PubMed  CAS  Google Scholar 

  36. Mukherjee S, Kally L, Brett CL, Rao R (2006) Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homeostasis and vesicle trafficking. Biochem J 398(1):97–105

    Article  PubMed  CAS  Google Scholar 

  37. Yoshida S, Anraku Y (2000) Characterization of staurosporine-sensitive mutants of Saccharomyces cerevisiae, vacuolar functions affect staurosporine sensitivity. Mol Gen Genet 263:877–888

    Article  PubMed  CAS  Google Scholar 

  38. Seaman MN, Marcusson EG, Cereghino JL, Emr SD (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 137:79–92

    Article  PubMed  CAS  Google Scholar 

  39. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    PubMed  CAS  Google Scholar 

  40. Futter CE, Pearse A, Hewlett LJ, Hopkins CR (1996) Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol 132:1011–1023

    Article  PubMed  CAS  Google Scholar 

  41. Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625

    Article  PubMed  CAS  Google Scholar 

  42. Bright NA, Reaves BJ, Mullock BM, Luzio JP (1997) Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110:2027–2040

    PubMed  CAS  Google Scholar 

  43. Mullock BM, Bright NA, Fearon CW, et al (1998) Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J Cell Biol 140:591–601

    Article  PubMed  CAS  Google Scholar 

  44. Bright NA, Gratian MJ, Luzio JP (2005) Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol 14:360–365

    Article  CAS  Google Scholar 

  45. Luzio JP, Pryor PR, Gray SR, et al (2005) Membrane Traffic to and from lysosomes. Biochem Soc Symp 72:77–86

    PubMed  CAS  Google Scholar 

  46. Haas A, Conradt B, Wickner W (1994) G-protein ligands inhibit in vitro reactions of vacuole inheritance. J Cell Biol 126:87–97

    Article  PubMed  CAS  Google Scholar 

  47. Fratti RA, Wickner W (2007) Distinct targeting and fusion functions of the PX- and SNARE-domains of yeast Vacuolar Vam7p. J Biol Chem 282:13133–13138

    Article  PubMed  CAS  Google Scholar 

  48. Wickner W (2002) Yeast vacuoles and membrane fusion pathways. EMBO J 21:1241–1247

    Article  PubMed  CAS  Google Scholar 

  49. Rieder SE, Emr SD (1997) A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell 8:2111–2118

    Google Scholar 

  50. Pfeffer S (2003) Membrane domains in the secretory and endocytic pathways. Cell 112:507–517

    Article  PubMed  CAS  Google Scholar 

  51. Vida TA, Huyer G, Emr SD (1993) Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar late endosome-like compartment. J Cell Biol 121:1245–1256

    Article  PubMed  CAS  Google Scholar 

  52. Kato M, Kuzuhara Y, Maeda H, Shirage S, Ueda M (2006) Analysis of a processing system for proteases using yeast Cell surface engineering: conversion of precursor of proteinase A to active protease A. Appl Microbiol Biotechnol 72:1229–1237

    Article  PubMed  CAS  Google Scholar 

  53. Seaman MN, McCaffery JM, Emr SD (1998) A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:66–681

    Article  Google Scholar 

  54. Withee JL, Mulholland J, Jeng R, Cyert MS (1997) An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol Biol Cell 8:263–277

    PubMed  CAS  Google Scholar 

  55. Haft CR, Sierra ML, Bafford R, et al (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps26, Vps29, and Vps35, assembly into multimeric complexes. Mol Biol Cell 11:4105–4116

    PubMed  CAS  Google Scholar 

  56. Arighi CN, Hartnell M, Aguilar RC, et al (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133

    Article  PubMed  CAS  Google Scholar 

  57. Verges M, Luton F, Gruber C, et al (2004) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6(8):763–769

    Article  PubMed  CAS  Google Scholar 

  58. Ghaemmaghami S, Huh W, Bower KL, et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  PubMed  CAS  Google Scholar 

  59. Huh W, Falvo JV, Gerke LC, et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  60. Peterson MR, Emr SD (2001) The class C Vps complex functions at multiple stages of the vacuolar transport pathway. Traffic 2(7):476–486

    Article  PubMed  CAS  Google Scholar 

  61. Subramanian S, Woolford CA, Jones EW (2004) The Sec1/Munc19 protein, Vps33p, functions at the endosome and the vacuole of Saccharomyces cerevisiae. Mol Biol Cell 15(6):2593–2605

    Article  PubMed  CAS  Google Scholar 

  62. Deloche O, Schekman RW (2002) Vps10p cycles between the TGN and the late endosome via the plasma membrane in clathrin mutants. Mol Biol Cell 13(12):4296–4307

    Article  PubMed  CAS  Google Scholar 

  63. Cowles CR, Odorizzi G, Payne GS, Emr SD (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91:109–118

    Article  PubMed  CAS  Google Scholar 

  64. Darsow T, Rieder SE, Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138(3):517–529

    Article  PubMed  CAS  Google Scholar 

  65. Nixon RA (2004) Niemann-Pick Type C disease and Alzheimer’s disease, the APP-endosome connection fattens up. Am J Pathol 164:975–985

    Google Scholar 

  66. Nixon RA (2005) Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging 26:373–382

    Article  PubMed  CAS  Google Scholar 

  67. Nixon RA, Cataldo AM (2006) Lysosomal system pathways, genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9:277–289

    PubMed  CAS  Google Scholar 

  68. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1):19–27

    PubMed  CAS  Google Scholar 

  69. Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936–4948

    PubMed  CAS  Google Scholar 

  70. Chow CK, Palecek SP (2004) Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells. Biotechnol Prog 20(2):449–456

    Article  PubMed  CAS  Google Scholar 

  71. Cereghino JL, Marcusson EG, Emr SD (1995) The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization. Mol Biol Cell 6(9):1082–1102

    Google Scholar 

  72. Stevens T, Esmon B, Schekman R (1982) Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30(2):439–448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to G. Payne and B. Horazdovsky for continuous support, guidance, and plasmid reagents. We thank T. Stevens for original gift of pro-CPY antibody and the Emr laboratory for anti-Vps35 antibodies. This work was supported by NIH-MBRS-SCORE grant # GM63119-02 to EG. MKT and OC were partially supported by the NIH-MBRS-SCORE grant. MP, CF, and DS were partially supported by NIH-MBRS, Howard Hughes, and Boeing, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Editte Gharakhanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M.K., Frost, C., Oyadomari, K. et al. A novel immunodetection screen for vacuolar defects identifies a unique allele of VPS35 in S. cerevisiae . Mol Cell Biochem 311, 121–136 (2008). https://doi.org/10.1007/s11010-008-9703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9703-y

Keywords

Navigation