Advertisement

Molecular and Cellular Biochemistry

, Volume 326, Issue 1–2, pp 87–95 | Cite as

Characterization of lipophilic drug binding to rat intestinal fatty acid binding protein

  • Tony Velkov
  • Maria L. R. Lim
  • James Horne
  • Jamie S. Simpson
  • Christopher J. H. Porter
  • Martin J. Scanlon
Article

Abstract

Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes) where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules, albeit with generally lower affinity than FA. The significance of these lower affinity interactions with exogenous compounds is not known. In this manuscript, we describe further characterization of drug-rat I-FABP binding interactions using a thermal-shift assay. A structural explanation of the observed affinity of rat I-FABP for different drugs based on spectroscopic data and modeling experiments is presented. In addition, immunocytochemistry has been used to probe the expression of I-FABP in a cell culture model reflective of the absorptive cells of the small intestine. Taken together, these data suggest a possible role for I-FABP in the disposition of some lipophilic drugs within the enterocyte.

Keywords

Intestinal drug absorption Drug transport Intestinal fatty acid binding protein Fluorescence-based thermal-shift assay 

Notes

Acknowledgments

T. Velkov is the recipient of a Peter Doherty Fellowship (384300) from the National Health and Medical Research Council, Australia. This work was supported by grants from the Australian Research Council (DP0342458, DP0664069).

References

  1. 1.
    Avdeef A (2003) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  2. 2.
    Avdeef A (2003) Absorption and drug development solubility, permeability, and charge state. Wiley-Interscience, Hoboken, NJGoogle Scholar
  3. 3.
    Lennernas H (1998) Human intestinal permeability. J Pharm Sci 87:403–410. doi: 10.1021/js970332a PubMedCrossRefGoogle Scholar
  4. 4.
    Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA (1994) Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 45:89–151. doi: 10.1016/S0065-3233(08)60639-7 PubMedCrossRefGoogle Scholar
  5. 5.
    Coe NR, Bernlohr DA (1998) Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta 1391:287–306PubMedGoogle Scholar
  6. 6.
    Lücke C, Gutiérrez-González LH, Hamilton J (2003) Intracellular lipid binding proteins: evolution, structure and ligand binding. In: Duttaroy AK, Spener F (eds) Cellular proteins and their fatty acids in health and disease. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  7. 7.
    Paulussen RJ, Van Moerkerk HT, Veerkamp JH (1990) Immunochemical quantitation of fatty acid-binding proteins. Tissue distribution of liver and heart FABP types in human and porcine tissues. Int J Biochem 22:393–398. doi: 10.1016/0020-711X(90)90142-P PubMedCrossRefGoogle Scholar
  8. 8.
    Bass NM, Manning JA (1986) Tissue expression of three structurally different fatty acid binding proteins from rat heart muscle, liver, and intestine. Biochem Biophys Res Commun 137:929–935. doi: 10.1016/0006-291X(86)90314-1 PubMedCrossRefGoogle Scholar
  9. 9.
    Hodsdon ME, Cistola DP (1997) Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry. Biochem 36:1450–1460. doi: 10.1021/bi961890r CrossRefGoogle Scholar
  10. 10.
    Wolfrum C, Borrmann CM, Börchers T, Spener F (2001) Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 98:2323–2328. doi: 10.1073/pnas.051619898 PubMedCrossRefGoogle Scholar
  11. 11.
    Velkov T, Chuang S, Wielens J, Sakellaris H, Charman WN, Porter CJ, Scanlon MJ (2005) The interaction of lipophilic drugs with intestinal fatty acid-binding protein. J Biol Chem 280:17769–17776. doi: 10.1074/jbc.M410193200 PubMedCrossRefGoogle Scholar
  12. 12.
    Velkov T, Horne J, Laguerre A, Jones E, Scanlon MJ, Porter CJ (2007) Examination of the role of intestinal fatty acid-binding protein in drug absorption using a parallel artificial membrane permeability assay. Chem Biol 14:453–465. doi: 10.1016/j.chembiol.2007.03.009 PubMedCrossRefGoogle Scholar
  13. 13.
    Wolfrum C, Börchers T, Sacchettini JC, Spener F (2000) Binding of fatty acids and peroxisome proliferators to orthologous fatty acid binding proteins from human, murine, and bovine liver. Biochem 39:1469–1474. doi: 10.1021/bi991638u CrossRefGoogle Scholar
  14. 14.
    Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75. doi: 10.1023/A:1011254402785 PubMedCrossRefGoogle Scholar
  15. 15.
    Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440. doi: 10.1177/108705710100600609 PubMedCrossRefGoogle Scholar
  16. 16.
    Lo M, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159. doi: 10.1016/j.ab.2004.04.031 PubMedCrossRefGoogle Scholar
  17. 17.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi: 10.1007/BF00197809 PubMedCrossRefGoogle Scholar
  18. 18.
    Goddard TD, Kneller DG (2006) SPARKY 3. http://www.cgl.ucsf.edu/home/sparky
  19. 19.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. J Med Chem 47:1739–1749. doi: 10.1021/jm0306430 PubMedCrossRefGoogle Scholar
  20. 20.
    DeLano WL (2002) PyMol. http://www.pymol.org
  21. 21.
    Sacchettini JC, Gordon JI, Banaszak LJ (1989) Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol 208:327–339. doi: 10.1016/0022-2836(89)90392-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Sacchettini JC, Gordon JI (1993) Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem 268:18399–18402PubMedGoogle Scholar
  23. 23.
    Ockner RK, Manning JA, Poppenhausen RB, Ho WK (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177:56–58. doi: 10.1126/science.177.4043.56 PubMedCrossRefGoogle Scholar
  24. 24.
    Storch J, Herr FM, Hsu KT, Kim HK, Liou HL, Smith ER (1996) The role of membranes and intracellular binding proteins in cytosolic transport of hydrophobic molecules: fatty-acid binding proteins. Comp Biochem Physiol 115B:333–339Google Scholar
  25. 25.
    Shen DD, Kunze KL, Thummel KE (1997) Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev 27:99–127. doi: 10.1016/S0169-409X(97)00039-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Doherty MM, Charman WN (2002) The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet 4:235–253. doi: 10.2165/00003088-200241040-00001 CrossRefGoogle Scholar
  27. 27.
    Dube N, Delvin E, Yotov W, Garofalo C, Bendayan M, Veerkamp JH, Levy E (2001) Modulation of intestinal and liver fatty acid-binding Proteins in caco-2 cells by lipids, hormones and cytokines. J Cell Biochem 81:613–620. doi: 10.1002/jcb.1090 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Tony Velkov
    • 1
  • Maria L. R. Lim
    • 1
  • James Horne
    • 1
  • Jamie S. Simpson
    • 1
  • Christopher J. H. Porter
    • 2
  • Martin J. Scanlon
    • 1
  1. 1.Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical SciencesMonash University (Parkville Campus)ParkvilleAustralia
  2. 2.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash University (Parkville Campus)ParkvilleAustralia

Personalised recommendations