Molecular and Cellular Biochemistry

, Volume 309, Issue 1–2, pp 223–227 | Cite as

Pitx3 promoter directs Cre-recombinase specifically in a human neuroblastoma cell line

  • Diana L. Castillo-Carranza
  • Humberto Rodríguez-Rocha
  • Roberto Montes-de-Oca-Luna
  • Julio Sepúlveda-Saavedra
  • Héctor R. Martínez
  • Yolanda López-Vidal
  • Odila Saucedo-Cárdenas


The Pitx3 gene is a homeobox transcription factor. This gene is expressed only in midbrain dopaminergic-neurons in the central nervous system, where its expression is important for development and survival of mesencephalic-dopaminergic neurons. The promoter region of the Pitx3 gene is not yet completely delimited. We used the Cre-loxP system to demonstrate the efficiency and specificity of a 4.2-kbp sequence in the 5′-flanking region of the Pitx3-gene promoter inserted in the 5′-terminus of the Cre-recombinase gene. A Cre-recombinase-reporter assay indicated that this 5′-flanking region possesses promoter activity. The cell-specific gene regulation of the Pitx3 promoter in neurons was demonstrated by a reverse-transcription polymerase chain reaction (RT-PCR) and Western blot detection of Cre-recombinase in SH-SY5Y cells but not in MCF7 cells. Functionality of the Cre-recombinase was confirmed in vitro. The Pitx3-promoter-Cre cassette here described can be used to develop transgenic mice with the specific expression of Cre-recombinase in midbrain-dopaminergic neurons to elucidate the gene function in which the conventional knockout leads to an early lethal phenotype. Such specific expression of the Pitx3 promoter may be used for gene therapy studies of Parkinson’s disease.


Pitx3 promoter Cre-recombinase activity SH-SY5Y cells 



This work was supported by National Council of Science and Technology (CONACYT) of Mexico, Grant 41616 to O.S-C. DL C-C and H.R-R are recipients of a fellowship from CONACYT of Mexico. Thanks to Dr Ellis Glazier for editing this English-language text.


  1. 1.
    Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, Witta J, Magnuson MA, Nikodem VM (1998) Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol Cell Neurosci 11:36–46PubMedCrossRefGoogle Scholar
  2. 2.
    Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95:4013–4018PubMedCrossRefGoogle Scholar
  3. 3.
    Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250PubMedCrossRefGoogle Scholar
  4. 4.
    Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100:4245–4250PubMedCrossRefGoogle Scholar
  5. 5.
    Smidt MP, Smits SM, Bouwmeester H, Hamers FP, Van der Linden AJ, Hellemons AJ, Graw J, Burbach JP (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131:1145–1155PubMedCrossRefGoogle Scholar
  6. 6.
    Smidt MP, Smits SM, Burbach JP (2004) Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 318:35–43PubMedCrossRefGoogle Scholar
  7. 7.
    Wang X, Li X, Wang K, Zhou H, Xue B, Li L, Wang X (2004) Forskolin cooperating with growth factor on generation of dopaminergic neurons from human fetal mesencephalic neural progenitor cells. Neurosci Lett 362:117–121PubMedCrossRefGoogle Scholar
  8. 8.
    Van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542PubMedCrossRefGoogle Scholar
  9. 9.
    Semina EV, Murray JC, Reiter R, Hrstka RF, Graw J (2000) Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 9:1575–1585PubMedCrossRefGoogle Scholar
  10. 10.
    Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Mol Brain Res 114:123–131PubMedCrossRefGoogle Scholar
  11. 11.
    Smidt MP, Van Schaick HS, Lanctot C, Tremblay JJ, Cox JJ, Van der Kleij AA, Wolterink G, Drouin J, Burbach JP (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94:13305–13310PubMedCrossRefGoogle Scholar
  12. 12.
    Quentien MH, Manfroid I, Moncet D, Gunz G, Muller M, Grino M, Enjalbert A, Pellegrini I (2002) Pitx factors are involved in basal and hormone-regulated activity of the human prolactin promoter. J Biol Chem 277:44408–44416PubMedCrossRefGoogle Scholar
  13. 13.
    Quentien MH, Pitoia F, Gunz G, Guillet MP, Enjalbert A, Pellegrini I (2002) Regulation of prolactin, GH, and Pit-1 gene expression in anterior pituitary by Pitx2: an approach using Pitx2 mutants. Endocrinology 143:2839–2851PubMedCrossRefGoogle Scholar
  14. 14.
    Quirk CC, Lozada KL, Keri RA, Nilson JH (2001) A single Pitx1 binding site is essential for activity of the LHbeta promoter in transgenic mice. Mol Endocrinol 15:734–746PubMedCrossRefGoogle Scholar
  15. 15.
    Rieger DK, Reichenberger E, McLean W, Sidow A, Olsen BR (2001) A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72:61–72PubMedCrossRefGoogle Scholar
  16. 16.
    Grimm C, Chatterjee B, Favor J, Immervoll T, Loster J, Klopp N, Sandulache R, Graw J (1998) Aphakia (ak), a mouse mutation affecting early eye development: fine mapping, consideration of candidate genes and altered Pax6 and Six3 gene expression pattern. Dev Genet 23:299–316PubMedCrossRefGoogle Scholar
  17. 17.
    Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF, Kim KS (2005) 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 25:2132–2137PubMedCrossRefGoogle Scholar
  18. 18.
    Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402PubMedCrossRefGoogle Scholar
  19. 19.
    Mangoura D, Theofilopoulos S, Karouzaki S, Tsirimonaki E (2006) 12-O-tetradecanoyl-phorbol-13-acetate-dependent up-regulation of dopaminergic gene expression requires Ras and neurofibromin in human IMR-32 neuroblastoma. J Neurochem 97:97–103PubMedCrossRefGoogle Scholar
  20. 20.
    McLaughlin D, Tsirimonaki E, Vallianatos G, Sakellaridis N, Chatzistamatiou T, Stavropoulos-Gioka C, Tsezou A, Messinis I, Mangoura D (2006) Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J Neurosci Res 83:1190–1200PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao S, Maxwell S, Jimenez-Beristain A, Vives J, Kuehner E, Zhao J, O’Brien C, de Felipe C, Semina E, Li M (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur J Neurosci 19:1133–1140PubMedCrossRefGoogle Scholar
  22. 22.
    Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Res Mol Brain Res 74:167–174PubMedCrossRefGoogle Scholar
  23. 23.
    Kessler MA, Yang M, Gollomp KL, Jin H, Iacovitti L (2003) The human tyrosine hydroxylase gene promoter. Brain Res Mol Brain Res 112:8–23PubMedCrossRefGoogle Scholar
  24. 24.
    Lin LF, Doherty DH, Lile JD, Becktesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRefGoogle Scholar
  25. 25.
    Lindholm P, Voutilainen MH, Laurén J, Peranen J, Leppanen VM, Andressoo JO, Lindahl M, Janhunen S, Kalkkinen N, Timmusk T, Tuominen RK, Saarma M (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448:73–77PubMedCrossRefGoogle Scholar
  26. 26.
    Gonzalez-Barrios JA, Lindahl M, Bannon MJ, Anaya-Martínez V, Flores G, Navarro-Quiroga I, Trudeau LE, Aceves J, Martinez-Arguelles DB, García-Villegas R, Jimenez I, Segovia J, Martínez-Fong D (2006) Neurotensin Polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol Ther 14:857–865PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Diana L. Castillo-Carranza
    • 1
  • Humberto Rodríguez-Rocha
    • 1
    • 2
  • Roberto Montes-de-Oca-Luna
    • 1
  • Julio Sepúlveda-Saavedra
    • 1
  • Héctor R. Martínez
    • 3
  • Yolanda López-Vidal
    • 4
  • Odila Saucedo-Cárdenas
    • 1
    • 2
  1. 1.Departamento de Histología, Facultad de MedicinaUniversidad Autónoma de Nuevo León (UANL)MonterreyMexico
  2. 2.División de Genética, Centro de Investigación Biomédica del NoresteInstituto Mexicano del Seguro Social (IMSS)MonterreyMexico
  3. 3.Servicio de Neurología, Hospital UniversitarioUniversidad Autónoma de Nuevo León (UANL)MonterreyMexico
  4. 4.Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de México (UNAM)MexicoMexico

Personalised recommendations