Skip to main content
Log in

Evaluation of the kinetic properties of the folate transport system in intestinal absorptive epithelium during experimental ethanol ingestion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The disturbances in body folate homeostasis such as intestinal malabsorption in alcoholism are well-known contributor to folate deficiency associated disorders. The study was sought to delineate the kinetic features of folate transport in intestinal absorptive epithelium that could highlight insights of malabsorption during alcoholism. We studied [3H]-folic acid transport in intestinal brush border membrane (BBM) after 3 months of ethanol administration at 1 g/kg body weight/day to rats. The results showed that the folate transport exhibited saturable kinetics and was pH, Na+, temperature, divalent cation sensitive, besides –SH group(s) was/were found important in the folate transport system to be efficiently operative. Importantly, the decreased intestinal BBM folate transport in chronic alcoholism was associated with increased K m and decreased V max during alcoholism. In addition, S–S group status of the transporter and presence of Na+ at the absorptive site seems to be perturbed during ethanol ingestion. However, H+/folate coupled transport provided the driving force for transport as pH optimum in acidic range was not altered during alcoholism. The inhibition constants of methotrexate and unlabelled folic acid revealed that the two analogues are handled differently by the folate transport system. In addition, the low activity of folate transport system during chronic ethanol exposure was associated with low RBC folate levels. Overall, these findings suggest that the deregulated folate transport kinetics might contribute to intestinal folate malabsorption in alcoholism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sabharanjak S, Mayor S (2004) Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev 56:1099–1109

    Article  PubMed  CAS  Google Scholar 

  2. Sirotnak FM, Tolner B (1999) Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr 19:91–122

    Article  PubMed  CAS  Google Scholar 

  3. Zhao R, Goldman ID (2003) Resistance to antifolates. Oncogene 22:7431–7457

    Article  PubMed  CAS  Google Scholar 

  4. Matherly LH, Goldman ID (2003) Membrane transport of folates. Vitam Horm 66:403–456

    Article  PubMed  CAS  Google Scholar 

  5. Zhou W, Yuan X, Wilson A et al (2002) Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjug Chem 13:1220–1225

    Article  PubMed  CAS  Google Scholar 

  6. Suh JR, Herbig AK, Stover PJ (2001) New perspectives on folate catabolism. Annu Rev Nutr 21:255–282

    Article  PubMed  CAS  Google Scholar 

  7. de Marco P, Calevo MG, Moroni A et al (2003) Reduced folate carrier polymorphism (80A→G) and neural tube defects. Eur J Hum Genet 11:245–252

    Article  PubMed  CAS  Google Scholar 

  8. Purohit V, Khalsa J, Serrano J (2005) Mechanisms of alcohol-associated cancers: introduction and summary of the symposium. Alcohol 35:155–160

    Article  PubMed  Google Scholar 

  9. Novakovic P, Stempak JM, Sohn KJ et al (2006) Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells. Carcinogenesis 27:916–924

    Article  PubMed  CAS  Google Scholar 

  10. Villanueva J, Chandler CJ, Shimasaki N et al (1994) Effects of ethanol feeding on liver, kidney and jejunal membranes of micropigs. Hepatol 19:1229–1240

    CAS  Google Scholar 

  11. Sakuta H, Suzuki T (2005) Alcohol consumption and plasma homocysteine. Alcohol 37:73–77

    Article  PubMed  CAS  Google Scholar 

  12. Yi P, Melnyk S, Pogribna M et al (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323

    Article  PubMed  CAS  Google Scholar 

  13. Hamid A, Kaur J (2006) Chronic alcoholism alters the transport characteristics of folate in rat renal brush border membrane. Alcohol 38:59–66

    Article  PubMed  CAS  Google Scholar 

  14. Hamid A, Kaur J (2005) Kinetic characteristics of folate binding to rat renal brush border membrane in chronic alcoholism. Mol Cell Biochem 280:219–225

    Article  PubMed  CAS  Google Scholar 

  15. Said HM (2004) Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu Rev Physiol 66:419–446

    Article  PubMed  CAS  Google Scholar 

  16. Persson J (1991) Alcohol and the small intestine. Scand J Gastroenterol 26:3–15

    PubMed  CAS  Google Scholar 

  17. Tamura T (1990) In: Picciano MF, Stokstad ELR, Gregory JF (eds) In Folic acid metabolism in health and disease. Wiley-Liss, New York, pp 121–137

  18. Weiser MM (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem 248:2536–2541

    PubMed  CAS  Google Scholar 

  19. Kessler M, Acuto O, Storelli C et al (1978) A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport. Biochim Biophys Acta 506:136–154

    Article  PubMed  CAS  Google Scholar 

  20. Halsted CH, Villanueva JA, Devlin AM (2002) Folate deficiency, methionine metabolism, and alcoholic liver disease. Alcohol 27:169–172

    Article  PubMed  CAS  Google Scholar 

  21. Naughton CA, Chandler CJ, Duplantier RB et al (1989) Folate absorption in alcoholic pigs: in vitro hydrolysis and transport at the intestinal brush border membrane. Am J Clin Nutr 50:1436–1441

    PubMed  CAS  Google Scholar 

  22. Said HM, Kumar C (1999) Intestinal absorption of vitamins. Curr Opin Gastroenterol 15:172

    Article  PubMed  CAS  Google Scholar 

  23. Chiao JH, Roy K, Tolner B et al (1997) RFC-1 gene expression regulates folate absorption in mouse small intestine. J Biol Chem 272:11165–11170

    Article  PubMed  CAS  Google Scholar 

  24. Dudeja PK, Torania SA, Said HM (1997) Evidence for the existence of a carrier-mediated folate uptake mechanism in human colonic luminal membranes. Am J Physiol Gastrointest Liver Physiol 272:G1408–G1415

    CAS  Google Scholar 

  25. Villanueva JA, Devlin AM, Halsted CH (2001) Reduced folate carrier: tissue distribution and effects of chronic ethanol intake in the micropig. Alcohol Clin Exp Res 25:415–420

    Article  PubMed  CAS  Google Scholar 

  26. Asai Y, Sano Y, Kikuchi K et al (2000) The effect of divalent cations on the membrane properties and pharmacokinetics in rat of the lipid A analogue E5531. J Pharm Pharmacol 52:39–45

    Article  PubMed  CAS  Google Scholar 

  27. Reisenauer AM, Chandler CJ, Halsted CH (1986) Folate binding and hydrolysis by pig intestinal brush border membranes. Am J Physiol Gastrointest Liver Physiol 251:G481–G486

    CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance by the Indian council of Medical Research, New Delhi, India is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotdeep Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid, A., Kaur, J. & Mahmood, A. Evaluation of the kinetic properties of the folate transport system in intestinal absorptive epithelium during experimental ethanol ingestion. Mol Cell Biochem 304, 265–271 (2007). https://doi.org/10.1007/s11010-007-9509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9509-3

Keywords

Navigation