Molecular and Cellular Biochemistry

, Volume 304, Issue 1–2, pp 255–263 | Cite as

Gender related differential effects of Omega-3E treatment on diabetes-induced left ventricular dysfunction

  • Erkan Tuncay
  • A. Aytac Seymen
  • Evrim Tanriverdi
  • Nazmi Yaras
  • Berivan Tandogan
  • N. Nuray Ulusu
  • Belma Turan


The present study was designed to determine whether there are beneficial effects of intake of Ω-3E (containing 70% pure omega-3 and 2% natural vitamin E) in cardiac dysfunction of diabetic rats. We also examined whether there are gender-related differences in the responses to the intake of Ω-3E on the heart dysfunction. Experiments were performed by using Langendorff-perfused hearts from normal, diabetic (with 50 mg/kg streptozotocin), and Ω-3E (50 mg/kg body weight/day) treated diabetic 3-month-old Wistar rats. Ω-3E treatment of the diabetics caused small, but significant decrease (13% and 14% female versus male) in the blood glucose level. Ω-3E treatment of the diabetic female rats did not prevent diabetes-induced decrease in left ventricular developed pressure (LVDP) and increase in left ventricular end-diastolic pressure (LVEDP) with respect to the control female rats. On the other hand, the treatment of diabetic male rats caused significant recovery in depressed LVDP. Furthermore, such treatment of diabetic female and male rats caused significant recovery in depressed rates of changes of developed pressure. This effect was more significant in males. Besides, Ω-3E caused significant further lengthening in the diabetes-induced increased time to the peak of the developed pressure in females, while it normalized the lengthening in the relaxation of the developed pressure in diabetic males. In addition, Ω-3E treatment caused significant restorations in the diabetes-induced altered activities of antioxidant enzymes without any significant gender discrepancy. Present data show that there are gender related differences in diabetic heart dysfunction and the response to antioxidant treatment.


Diabetes Oxidant stress Antioxidants Heart function n-3 Polyunsaturated fatty acids Thioredoxin reductase 



We thank the company of Vesteralens Naturprodukter AS (Sortland-Norway) for kindly providing us Ω-3E (FreeFlow) used in this study. This work was supported by grants of Ankara University research fund projects No: 20060809233.


  1. 1.
    Dahlberg ST (1990) Gender differences in the risk factors for sudden cardiac death. Cardiology 77(Suppl 2):31–40PubMedCrossRefGoogle Scholar
  2. 2.
    Kannel WB, Belanger AJ (1991) Epidemiology of heart failure. Am Heart J 121(3 Pt 1):951–957PubMedCrossRefGoogle Scholar
  3. 3.
    Gadrin JM, Wagenknecht LE, Anton-Culver H, Flack J, Gidding S, Jurosaki T, Wang ND, Manolio TA (1995) Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. Circulation 92:380–387Google Scholar
  4. 4.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:7827–7887CrossRefGoogle Scholar
  5. 5.
    Yaras N, Ozdemir S, Ugur M, Puralı N, Gurdal H, Lacampagne A, Vassort G, Turan B (2005) Effect of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54(11):3082–3088PubMedCrossRefGoogle Scholar
  6. 6.
    Hershfinkel M, Moran A, Grossman N, Sekler I (2001) A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci 98(20):11749–11754PubMedCrossRefGoogle Scholar
  7. 7.
    Fein FS, Sonnenblick EH (1985) Diabetic cardiomyopathy. Prog Cardiovasc Dis 27(4):255–270PubMedCrossRefGoogle Scholar
  8. 8.
    Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9PubMedCrossRefGoogle Scholar
  9. 9.
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108(17):2034–2040PubMedCrossRefGoogle Scholar
  10. 10.
    Ceriello A, dello Russo P, Amstad P, Cerutti P (1996) High glucose induces antioxidant enzymes in human endothelial cells in culture. Evidence linking hyperglycemia and oxidative stress. Diabetes 45(4):471–477PubMedCrossRefGoogle Scholar
  11. 11.
    Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19(3):257–267PubMedCrossRefGoogle Scholar
  12. 12.
    Yamawaki H, Berk BC (2005) Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Curr Opin Nephrol Hypertens 14(2):149–153PubMedCrossRefGoogle Scholar
  13. 13.
    World CJ, Yamawaki H, Berk BC (2006) Thioredoxin in the cardiovascular system. J Mol Med 84(12):997–1003PubMedCrossRefGoogle Scholar
  14. 14.
    Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA (2001) Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50(8):1927–1937PubMedCrossRefGoogle Scholar
  15. 15.
    Ayaz M, Ozdemir S, Ugur M, Vassort G, Turan B (2004) Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arc Biochem Biophys 426:83–90CrossRefGoogle Scholar
  16. 16.
    Ayaz M, Can B, Ozdemir S, Turan B (2002) Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res 89:215–226PubMedCrossRefGoogle Scholar
  17. 17.
    Tappel AL, Zalkin H, Caldwell KA, Desai ID, Shibko S (1962) Increased lysosomal enzymes in genetic muscular dystrophy. Arch Biochem Biophys 96:340–346PubMedCrossRefGoogle Scholar
  18. 18.
    Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 328(20):1444–1449PubMedCrossRefGoogle Scholar
  19. 19.
    Rimm E, Colditz G (1993) Smoking, alcohol, and plasma levels of carotenes and vitamin E. Ann N Y Acad Sci 686:323–333PubMedCrossRefGoogle Scholar
  20. 20.
    Elangovan V, Shohami E, Gati I, Kohen R (2000) Increased hepatic lipid soluble antioxidant capacity as compared to other organs of streptozotocin-induced diabetic rats: a cyclic voltammetry study. Free Radic Res 32(2):125–134PubMedCrossRefGoogle Scholar
  21. 21.
    Schmidt EB, Arnesen H, de Caterina R, Rasmussen LH, Kristensen SD (2005) Marine n-3 polyunsaturated fatty acids and coronary heart disease. Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb Res 115:163–170PubMedCrossRefGoogle Scholar
  22. 22.
    Jude S, Roger S, Martel E, Besson P, Richard S, Bougnoux P, Champeroux P, Guennec JL (2006) Dietary long-chain omega-3 fatty acids of marine origin: a comparison of their protective effects on coronary heart disease and breast cancers. Biophys Mol Biol 90:299–325CrossRefGoogle Scholar
  23. 23.
    Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, Elwood PC, Deadman NM (1989) Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2(8666):757–761PubMedCrossRefGoogle Scholar
  24. 24.
    GISSI-Prevenzione Investigators (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione Trial. Lancet 354:447–455CrossRefGoogle Scholar
  25. 25.
    Singh R, Niaz M, Sharma J, Kumar R, Rastogi V, Moshiri M (1997) Randomized, double-blind, placebo-controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: the Indian experiment of infarct survival-4. Cardiovasc Drug Ther 11:485–491CrossRefGoogle Scholar
  26. 26.
    McLennan P, Bridle T, Abeywardena M, Charnock J (1992) Dietary lipid modulation of ventricular fibrillation threshold in the marmoset monkey. Am Heart J 123:1555–1561PubMedCrossRefGoogle Scholar
  27. 27.
    McLennan P, Abeywardena M, Charnock J (1988) Dietary fish oil prevents ventricular fibrilation following coronary artery occlusion and reperfusion. Am Heart J 116:709–717PubMedCrossRefGoogle Scholar
  28. 28.
    Billman GE, Kang JX, Leaf A (1999) Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation 99(18):2452–2457PubMedGoogle Scholar
  29. 29.
    Da Ros R, Assaloni R, Ceriello A (2004) Antioxidant therapy in diabetic complications: what is new? Curr Vasc Pharmacol 2:335–341PubMedCrossRefGoogle Scholar
  30. 30.
    Chattopadhyay A, Bandyopadhyay D (2006) Vitamin E in the prevention of ischemic heart disease. Pharmacol Rep 58(2):179–187PubMedGoogle Scholar
  31. 31.
    American Diabetes Association (2002) Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 25(Suppl1):50–60Google Scholar
  32. 32.
    Ulusu NN, Turan B (2005) Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 103(3):207–216PubMedCrossRefGoogle Scholar
  33. 33.
    Gromer S, Wissing J, Behne D, Ashman K, Schirmer RH, Flohe L, Becker K (1998) A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. Biochem J 332(Pt 2):591–592PubMedGoogle Scholar
  34. 34.
    Ayaz M, Turan B (2006) Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 290(3):H1071–H1080PubMedCrossRefGoogle Scholar
  35. 35.
    Carroll JD, Carroll EP, Feldman T, Ward DM, Lang RM, McGaughey D, Karp RB (1992) Gender-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 86:1099–1107PubMedGoogle Scholar
  36. 36.
    Capasso JM, Remily RM, Smith RH, Sonnenblick EH (1983) Gender differences in myocardial contractility in the rats. Res Cardiol 78:156–171CrossRefGoogle Scholar
  37. 37.
    Schaible TF, Scheuer J (1984) Comparison of heart function in male and female rats. Basic Res Cardiol 79(4):402–412PubMedCrossRefGoogle Scholar
  38. 38.
    Forman DE, Cittadini A, Azar G, Douglas PS, Wei JY (1997) Cardiac morphology and function in senescent rats: gender-related differences. J Am Coll Cardiol 30:1792–1877CrossRefGoogle Scholar
  39. 39.
    Schwertz DW, Vizgirda V, Solaro RJ, Piano MR, Ryjewski C (1999) Genderual dimorphism in rat left atrial function and response to adrenergic stimulation. Mol Cell Biochem 200(1–2):143–153PubMedCrossRefGoogle Scholar
  40. 40.
    Hernandez I, Delgado JL, Diaz J, Quesada T, Teruel MJ, Llanos MC, Carbonell LF (2000) 17Beta-estradiol prevents oxidative stress and decreases blood pressure in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 279(5):R1599–R1605PubMedGoogle Scholar
  41. 41.
    Lacy F, Kailasam MT, O’Connor DT, Schmid-Schonbein GW, Parmer RJ (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36(5):878–884PubMedGoogle Scholar
  42. 42.
    Shimoni Y, Hunt D, Chuang M, Chen KY, Kargacin G, Severson DL (2005) Modulation of potassium currents by angiotensin and oxidative stress in cardiac cells from the diabetic rat. J Physiol 567(Pt 1):177–190PubMedCrossRefGoogle Scholar
  43. 43.
    Chen PY, Csutora P, Veyna-Burke NA, Marchase RB (1998) Glucose-6-phosphate and Ca2+ sequestration are mutually enhanced in microsomes from liver, brain, and heart. Diabetes 47:874–881PubMedCrossRefGoogle Scholar
  44. 44.
    Ye G, Metreveli NS, Ren J, Epstein PN (2003) Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 52:777–783PubMedCrossRefGoogle Scholar
  45. 45.
    Gocmen C, Secilmis A, Kumcu EK, Ertug PU, Onder S, Dikmen A, Baysal F (2000) Effects of vitamin E and sodium selenate on neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mouse. Eur J Pharmacol 398(1):93–98PubMedCrossRefGoogle Scholar
  46. 46.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342(3):154–160PubMedCrossRefGoogle Scholar
  47. 47.
    Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR (2005) HOPE and HOPE-TOO trial investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293(11):1338–1347PubMedCrossRefGoogle Scholar
  48. 48.
    Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F (2001) Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids 36:53–63CrossRefGoogle Scholar
  49. 49.
    Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Womens’s Health Study: a randomized controlled trial. JAMA 294:56–65PubMedCrossRefGoogle Scholar
  50. 50.
    Geelen A, Zock PL, Brouwer IA, Katan MB, Kors JA, Ritsema van Eck HJ, Schouten EG (2005) Effect of n-3 fatty acids from fish on electrocardiographic characteristics in patients with frequent premature ventricular complexes. Br J Nutr 93(6):787–790PubMedCrossRefGoogle Scholar
  51. 51.
    Owen AJ, Peter-Przyborowska BA, Hoy AJ, McLennan PL (2004) Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition. Lipids 39(10):955–961PubMedCrossRefGoogle Scholar
  52. 52.
    Hu FB, Cho E, Rexrode KM, Albert CM, Manson JE (2003) Fish and long-chain omega-3 fatty acid intake and risk of coronary heart disease and total mortality in diabetic women. Circulation 107(14):1852–1857PubMedCrossRefGoogle Scholar
  53. 53.
    Baro L, Fonolla J, Pena JL, Martinez-Ferez A, Lucana A, Jimenez J, Boza JJ, Lopez-Huertas E (2003) n-3 Fatty acids plus oleic acid and vitamin supplemented milk consumotion reduces total and LDL cholesterol, homocysteine and levels of endothelial adhesion molecules in healthy humans. Clin Nutr 22(2):175–182PubMedCrossRefGoogle Scholar
  54. 54.
    Kesavulu MM, Kameswararao B, Apparao Ch, Kumar EG, Harinarayan CV (2002) Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes Metab 28(1):20–26PubMedGoogle Scholar
  55. 55.
    Montori VM, Farmer A, Wollan PC, Dinneen SF (2000) Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care 23(9):1407–1415PubMedCrossRefGoogle Scholar
  56. 56.
    Woodman RJ, Mori TA, Burke V, Puddey IB, Watts GF, Beilin LJ (2002) Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension. Am J Clin Nutr 76(5):1007–1015PubMedGoogle Scholar
  57. 57.
    Hunkar T, Aktan F, Ceylan A, Karasu C (2002) Antioxidants in Diabetes-induced Complications (ADIC) Study Group. Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotocin-diabetic rats. Cell Biochem Func 20:297–302CrossRefGoogle Scholar
  58. 58.
    Macleod JC, Macknight AD, Rodrigo GC (1998) The electrical and mechanical response of adult guinea pig and rat ventricular myocytes to omega-3 polyunsaturated fatty acids. Eur J Pharmacol 356(2–3):261–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Erkan Tuncay
    • 1
  • A. Aytac Seymen
    • 1
  • Evrim Tanriverdi
    • 1
  • Nazmi Yaras
    • 1
  • Berivan Tandogan
    • 2
  • N. Nuray Ulusu
    • 2
  • Belma Turan
    • 1
  1. 1.Department of Biophysics, School of MedicineAnkara UniversityAnkaraTurkey
  2. 2.Department of Biochemistry, Faculty of MedicineHacettepe UniversityAnkaraTurkey

Personalised recommendations