Molecular and Cellular Biochemistry

, Volume 302, Issue 1–2, pp 133–143 | Cite as

Homocysteine-induced biochemical stress predisposes to cytoskeletal remodeling in stretched endothelial cells

  • Utpal Sen
  • Karni S. Moshal
  • Mahavir Singh
  • Neetu Tyagi
  • Suresh C. Tyagi


Cellular cytoskeletal remodeling reflects alterations in local biochemical and mechanical changes in terms of stress that manifests relocation of signaling molecules within and across the cell. Although stretching due to load and chemical changes by high homocysteine (HHcy) causes cytoskeletal re-arrangement, the synergism between stretch and HHcy is unclear. We investigated the contribution of HHcy in cyclic stretch-induced focal adhesion (FA) protein redistribution leading to cytoskeletal re-arrangement in mouse aortic endothelial cells (MAEC). MAEC were subjected to cyclic stretch (CS) and HHcy alone or in combination. The redistribution of FA protein, and small GTPases were determined by Confocal microscopy and Western blot techniques in membrane and cytosolic compartments. We found that each treatment induces focal adhesion kinase (FAK) phosphorylation and cytoskeletal actin polymerization. In addition, CS activates and membrane translocates small GTPases RhoA with minimal effect on Rac1, whereas HHcy alone is ineffective in both GTPases translocation. However, the combined effect of CS and HHcy activates and membrane translocates both GTPases. Free radical scavenger NAC (N-Acetyl-Cysteine) inhibits CS and HHcy-mediated FAK phosphorylation and actin stress fiber formation. Interestingly, CS also activates and membrane translocates another FA protein, paxillin in HHcy condition. Cytochalasin D, an actin polymerization blocker and PI3-kinase inhibitor Wortmannin inhibited FAK phosphorylation and membrane translocation of paxillin suggesting the involvement of PI3K pathway. Together our results suggest that CS- and HHcy-induced oxidative stress synergistically contribute to small GTPase membrane translocation and focal adhesion protein redistribution leading to endothelial remodeling.


Focal adhesion Cytoskeletal signaling GTPase translocation Oxidative stress 



β-myosin heavy chain


Cyclic stretch


Focal adhesion (kinase)




Mouse aortic endothelial cell




Polyvinylidene difluoride


Rho kinase


Reactive oxygen species



This research was supported in part by American Heart Association Post-Doctoral training grant (award # 0625579B) (to Karni S. Moshal) and NIH grants HL-71010 and HL-74185 (to Suresh C. Tyagi). Mahavir Singh sincerely appreciates the Indian Council of Agricultural Research (ICAR), New Delhi, Indian Veterinary Research Institute (IVRI), Izatnagar and the Department of Biotechnology (DBT), New Delhi, India for promoting the Advanced Biotechnology Research Initiatives.


  1. 1.
    Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci 902:230–239PubMedCrossRefGoogle Scholar
  2. 2.
    Gimbrone MA Jr, Resnick N, Nagel T, Khachigian LM, Collins T, Topper JN (1997) Hemodynamics, endothelial gene expression, and atherogenesis. Ann NY Acad Sci 811:1–10PubMedCrossRefGoogle Scholar
  3. 3.
    Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C, De Franceschi M, Belardinelli R, Guazzi MD (2001) Oxidative stress and homocysteine in coronary artery disease. Clin Chem 47:887–892PubMedGoogle Scholar
  4. 4.
    Faraci FM (2003) Hyperhomocysteinemia: a million ways to lose control. Arterioscler Thromb Vasc Biol 23:371–373PubMedCrossRefGoogle Scholar
  5. 5.
    Gimbrone MA Jr, Nagel T, Topper JN (1997) Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest 99:1809–1813PubMedGoogle Scholar
  6. 6.
    Resnick N, Gimbrone MA Jr (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 9:874–882PubMedGoogle Scholar
  7. 7.
    Cheng JJ, Wung BS, Chao YJ, Wang DL (1998) Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells. Hypertension 31: 125–130PubMedGoogle Scholar
  8. 8.
    Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL (1997) Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 81:1–7PubMedGoogle Scholar
  9. 9.
    Sai X, Naruse K, Sokabe M (1999) Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. J Cell Sci 112:1365–1373PubMedGoogle Scholar
  10. 10.
    Sen U, Moshal KS, Tyagi N, Kartha GK, Tyagi SC (2006) Homocysteine-induced myofibroblast differentiation in mouse aortic endothelial cells. J Cell Physiol 209:767–774PubMedCrossRefGoogle Scholar
  11. 11.
    Vepa S, Scribner WM, Parinandi NL, English D, Garcia JG, Natarajan V (1999) Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am J Physiol 277:L150–L158PubMedGoogle Scholar
  12. 12.
    Ali MH, Mungai PT, Schumacker PT (2006) Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol 291:L38–L45PubMedCrossRefGoogle Scholar
  13. 13.
    Sastry SK, Burridge K (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 261:25–36PubMedCrossRefGoogle Scholar
  14. 14.
    Brown MC, West KA, Turner CE (2002) Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13:1550–1565PubMedCrossRefGoogle Scholar
  15. 15.
    Turner CE (1998) Paxillin. Int J Biochem Cell Biol 30:955–959PubMedCrossRefGoogle Scholar
  16. 16.
    Aspenstrom P (1999) Effectors for the Rho GTPases. Curr Opin Cell Biol 11:95–102PubMedCrossRefGoogle Scholar
  17. 17.
    Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208PubMedGoogle Scholar
  18. 18.
    Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11:471–477PubMedCrossRefGoogle Scholar
  19. 19.
    Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, KG Birukov (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304:40–49PubMedCrossRefGoogle Scholar
  20. 20.
    Turner CE, West KA, Brown MC (2001) Paxillin-ARF GAP signaling and the cytoskeleton. Curr Opin Cell Biol 13:593–599PubMedCrossRefGoogle Scholar
  21. 21.
    Jamieson JS, Tumbarello DA, Halle M, Brown MC, Tremblay ML, Turner CE (2005) Paxillin is essential for PTP-PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. J Cell Sci 118:5835–5847PubMedCrossRefGoogle Scholar
  22. 22.
    Brown MC, West KA, Turner CE (2002) Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13:1550–1565PubMedCrossRefGoogle Scholar
  23. 23.
    Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285:L785–L797PubMedGoogle Scholar
  24. 24.
    Murakami H, Iwashita T, Asai N, Iwata Y, Narumiya S, Takahashi M (1999) Rho-dependent and -independent tyrosine phosphorylation of focal adhesion kinase, paxillin and p130Cas mediated by Ret kinase. Oncogene 18:1975–1982PubMedCrossRefGoogle Scholar
  25. 25.
    Rankin S, Hooshmand-Rad R, Claesson-Welsh L, Rozengurt E (1996) Requirement for phosphatidylinositol 3′-kinase activity in platelet-derived growth factor-stimulated tyrosine phosphorylation of p125 focal adhesion kinase and paxillin. J Biol Chem 271:7829–7834PubMedCrossRefGoogle Scholar
  26. 26.
    Lehoux S, Esposito B, Merval R, Tedgui A (2005) Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111:643–649PubMedCrossRefGoogle Scholar
  27. 27.
    Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62PubMedCrossRefGoogle Scholar
  28. 28.
    Awolesi MA, Sessa WC, Sumpio BE (1995) Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96:1449–1454PubMedCrossRefGoogle Scholar
  29. 29.
    Cunningham JJ, Linderman JJ, Mooney DJ (2002) Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann Biomed Eng 30:927–935PubMedCrossRefGoogle Scholar
  30. 30.
    Ben Mahdi MH, Andrieu V, Pasquier C (2000) Focal adhesion kinase regulation by oxidative stress in different cell types. IUBMB Life 50:291–299PubMedCrossRefGoogle Scholar
  31. 31.
    Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY (1996) Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134:793–799PubMedCrossRefGoogle Scholar
  32. 32.
    Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540:1–21PubMedCrossRefGoogle Scholar
  33. 33.
    Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544PubMedCrossRefGoogle Scholar
  34. 34.
    Rankin S, Rozengurt E (1994) Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. J Biol Chem 269:704–710PubMedGoogle Scholar
  35. 35.
    Han DC, Guan JL (1999) Association of focal adhesion kinase with Grb7 and its role in cell migration. J Biol Chem 274:24425–24430PubMedCrossRefGoogle Scholar
  36. 36.
    Reiske HR, Kao SC, Cary LA, Guan JL, Lai JF, Chen HC (1999) Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. J Biol Chem 274:12361–12366PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK (1999) Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc Natl Acad Sci USA 96:9021–9026PubMedCrossRefGoogle Scholar
  38. 38.
    Lunn JA, Rozengurt E (2004) Hyperosmotic stress induces rapid focal adhesion kinase phosphorylation at tyrosines 397 and 577. Role of Src family kinases and Rho family GTPases. J Biol Chem 279:45266–45278PubMedCrossRefGoogle Scholar
  39. 39.
    Guan JL (1997) Focal adhesion kinase in integrin signaling. Matrix Biol 16:195–200PubMedCrossRefGoogle Scholar
  40. 40.
    van Nieuw Amerongen GP, Natarajan K, Yin G, Hoefen RJ, Osawa M, Haendeler J, Ridley AJ, Fujiwara K, van Hinsbergh VW, Berk BC (2004) GIT1 mediates thrombin signaling in endothelial cells: role in turnover of RhoA-type focal adhesions. Circ Res 94:1041–1049PubMedCrossRefGoogle Scholar
  41. 41.
    Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410PubMedCrossRefGoogle Scholar
  42. 42.
    Torsoni AS, Marin TM, Velloso LA, Franchini KG (2005) RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289:H1488–1496PubMedCrossRefGoogle Scholar
  43. 43.
    Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, Li S, Chien S, Schwartz MA (2002) Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J 21:6791–6800PubMedCrossRefGoogle Scholar
  44. 44.
    Schaller MD, Parsons JT (1994) Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6:705–710PubMedCrossRefGoogle Scholar
  45. 45.
    Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84:1315–1339PubMedCrossRefGoogle Scholar
  46. 46.
    Bukharova T, Weijer G, Bosgraaf L, Dormann D, van Haastert PJ, Weijer CJ (2005) Paxillin is required for cell-substrate adhesion, cell sorting and slug migration during Dictyostelium development. J Cell Sci 118:4295–4310PubMedCrossRefGoogle Scholar
  47. 47.
    Li X, Earp HS (1997) Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J Biol Chem 272:14341–14348PubMedCrossRefGoogle Scholar
  48. 48.
    Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277:C152–C162PubMedGoogle Scholar
  49. 49.
    Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Utpal Sen
    • 1
  • Karni S. Moshal
    • 1
  • Mahavir Singh
    • 1
    • 2
  • Neetu Tyagi
    • 1
  • Suresh C. Tyagi
    • 1
  1. 1.Department of Physiology & Biophysics, HSCUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Biotechnology and Cell BiologyPotentia Pharmaceuticals Inc.LouisvilleUSA

Personalised recommendations