Molecular and Cellular Biochemistry

, Volume 288, Issue 1–2, pp 201–212 | Cite as

Prolonged AMPK Activation Increases the Expression of Fatty Acid Transporters in Cardiac Myocytes and Perfused Hearts

  • Adrian Chabowski
  • Iman Momken
  • Susan L. M. Coort
  • Jorge Calles-Escandon
  • Narendra N. Tandon
  • Jan F. C. Glatz
  • Joost J. F. P. Luiken
  • Arend Bonen


Recently, fatty acid transport across the plasma membrane has been shown to be a key process that contributes to the regulation of fatty acid metabolism in the heart. Since AMP kinase activation by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) stimulates fatty acid oxidation, as well as the expression of selected proteins involved with energy provision, we examined (a) whether AICAR induced the expression of the fatty acid transporters FABPpm and FAT/CD36 in cardiac myocytes and in perfused hearts and (b) the signaling pathway involved. Incubation of cardiac myocytes with AICAR increased the protein expression of the fatty acid transporter FABPpm after 90 min (+27%, P < 0.05) and this protein remained stably overexpressed until 180 min. Similarly, FAT/CD36 protein expression was increased after 60 min (+38%, P < 0.05) and remained overexpressed thereafter. Protein overexpression, which occurred via transcriptional mechanisms, was dependent on the AICAR concentration, with optimal induction occurring at AICAR concentrations 1–5 mM for FABPpm and at 2–8 mM for FAT/CD36. The AICAR (2 h, 2 mM AICAR) effects on FABPpm and FAT/CD36 protein expression were similar in perfused hearts and in cardiac myocytes. AICAR also induced the plasmalemmal content of FAT/CD36 (+49%) and FABPpm (+42%) (P < 0.05). This was accompanied by a marked increase in the rate of palmitate transport (2.5 fold) into giant sarcolemmal vesicles, as well as by increased rates of palmitate oxidation in cardiac myocytes. When the AICAR-induced AMPK phosphorylation was blocked, neither FAT/CD36 nor FABPpm were overexpressed, nor were palmitate uptake and oxidation increased. This study has revealed that AMPK activation stimulates the protein expression of both fatty acid transporters, FAT/CD36 and FABPpm in (a) time- and (b) dose-dependent manner via (c) the AMPK signaling pathway. AICAR also (d) increased the plasmalemmal content of FAT/CD36 and FABPm, thereby (e) increasing the rates of fatty acid transport. Thus, activation of AMPK is a key mechanism regulating the expression as well as the plasmalemmal localization of fatty acid transporters.


FAT/CD36 FABPpm fatty acid transport fatty acid oxidation giant vesicles perfusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940, 1992PubMedGoogle Scholar
  2. 2.
    Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD: Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301: 67–75, 1996PubMedGoogle Scholar
  3. 3.
    Longnus SL, Wambolt RB, Barr RL, Lopaschuk GD, Allard MF: Regulation of myocardial fatty acid oxidation by substrate supply. Am J Physiol Heart Circ Physiol 281: H1561–H1567, 2001PubMedGoogle Scholar
  4. 4.
    Awan MM, Saggerson ED: Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J 295: 61–66, 1993PubMedGoogle Scholar
  5. 5.
    Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD: High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270: 17513–17520, 1995CrossRefPubMedGoogle Scholar
  6. 6.
    Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A: Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269: 25871–25878, 1994PubMedGoogle Scholar
  7. 7.
    Ruderman NB, Dean D: Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle. J Basic Clin Physiol Pharmacol 9: 295–308, 1998PubMedGoogle Scholar
  8. 8.
    Ruderman NB, Saha AK, Vavvas D, Kurowski T, Laybutt DR, Schmitz-Peiffer C, Biden T, Kraegen EW: Malonyl CoA as a metabolic switch and a regulator of insulin sensitivity. Adv Exp Med Biol 441: 263–270, 1998PubMedGoogle Scholar
  9. 9.
    Ruderman NB, Saha AK, Vavvas D, Witters LA: Malonyl CoA, fuel sensing and insulin resistance. Am J Physiol Endocrinol Metab 276: E1–E18, 1999Google Scholar
  10. 10.
    Atkinson LL, Kozak R, Kelly SE, Onay-Besikci A, Russell JC, Lopaschuk GD: Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab 284: E923–E920, 2003PubMedGoogle Scholar
  11. 11.
    Shearer J, Fueger PT, Rottman JN, Bracy DP, Martin PH, Wasserman DH: AMPK stimulation increases LCFA but not glucose clearance in cardiac muscle in vivo. Am J Physiol Endocrinol Metab 287: E871–877, 2004CrossRefPubMedGoogle Scholar
  12. 12.
    Coort SLM, Hasselbaink DM, Koonen DYP, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JFC, Luiken JJFP: Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese Zucker rats. Diabetes 53: 1655–1663, 2004PubMedGoogle Scholar
  13. 13.
    Bonen A, Luiken JJFP, Arumugam Y, Glatz JFC, Tandon NN: Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275: 14501–14508, 2000CrossRefPubMedGoogle Scholar
  14. 14.
    Clarke DC, Miskovic D, Han X-X, Calles-Escandon J, Glatz JFC, Luiken JJFP, Heikkila JJ, Bonen A: Overexpression of membrane associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol Genomics 17: 31–37, 2004CrossRefPubMedGoogle Scholar
  15. 15.
    Coburn CT, Knapp Jr FF, Febbraio M, Beets AL, Silverstein RL, Abumrad NA: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissue of CD36 knockout mice. J Biol Chem 275: 32523–32529, 2000CrossRefPubMedGoogle Scholar
  16. 16.
    Stahl A, Evans JG, Pattel S, Hirsch D, Lodish HF: Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev Cell 2: 477–488, 2002CrossRefPubMedGoogle Scholar
  17. 17.
    Luiken JJFP, Koonen DPY, Willems J, Zorzano A, Fischer Y, van der Vusse GJ, Bonen A, Glatz JFC: Insulin stimulates long-chain fatty acid uilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51: 3113–3119, 2002PubMedGoogle Scholar
  18. 18.
    Luiken JJFP, Coort SML, Willems J, Coumans WA, Bonen A, van der Vusse GJ, Glatz JFC: Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52: 1627–1634, 2003PubMedGoogle Scholar
  19. 19.
    Bonen A, Luiken JJFP, Lui S, Dyck DJ, Kiens B, Kristiansen S, Turcotte L, van der Vusse GJ, Glatz JFC: Palmitate transport and fatty acid transporters in red and white muscles. Am J Physiol Endocrinol Metab 275: E471–E478, 1998Google Scholar
  20. 20.
    Chabowski A, Coort SL, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Bonen A: Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am J Physiol Endocrinol Metab 287: E781–E789, 2004PubMedCrossRefGoogle Scholar
  21. 21.
    Hirsch D, Stahl A, Lodish HF: A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95: 8625–8629, 1998CrossRefPubMedADSGoogle Scholar
  22. 22.
    Luiken JJFP, Dyck DJ, Han X-X, Tandon NN, Arumugam Y, Glatz JFC, Bonen A: Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am J Physiol Endocrinol Metab 282: E491–E495, 2002PubMedGoogle Scholar
  23. 23.
    Gimeno RE, Ortegon AM, Patel S, Punreddy S, Ge P, Sun Y, Lodish HF, Stahl A: Characterization of a heart-specific fatty acid transport protein. J Biol Chem 278: 16039–16044, 2003CrossRefPubMedGoogle Scholar
  24. 24.
    Glatz JFC, Luiken J, Bonen A: Exercise and insulin increase muscle fatty acid uptake by recruiting puttaive fatty acid transporters to the sarcolemma. Curr Opin Clin Nutr Metab Care 5: 365–370, 2002CrossRefPubMedGoogle Scholar
  25. 25.
    Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, Glatz JF: Dipyridamole alters cardiac substrate preference by inducing translocation of FAT/CD36, but not that of GLUT4. Mol Pharmacol 65: 639–645, 2004CrossRefPubMedGoogle Scholar
  26. 26.
    Chabowski A, Coort SLM, Calles-Escandon J, Tandon NN, Glatz JFC, Luiken JJFP, Bonen A: The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett 579: 2428–2432, 2005CrossRefPubMedGoogle Scholar
  27. 27.
    Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA: Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscles, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 274: 26761–26766, 1999CrossRefPubMedGoogle Scholar
  28. 28.
    Koonen DPY, Benton CR, Arumugam Y, Tandon NN, Calles-Escandon J, Glatz JFC, Luiken JJFP, Bonen A: Different mechanism can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab 286: 1042–1049, 2004CrossRefGoogle Scholar
  29. 29.
    Batt J, Bain J, Goncalves J, Michalski B, Plant P, Fahnestock M, Woodgett J: Differential gene expression profiling of short and long term denervated muscle. Faseb J 20: 115–117, 2006PubMedGoogle Scholar
  30. 30.
    Kahn BB, Alquier T, Carling D, Hardie G: AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism 1: 15–25, 2005CrossRefPubMedGoogle Scholar
  31. 31.
    Smith AC, Bruce CR, Dyck DJ: AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle. J Physiol 565: 537–546, 2005CrossRefPubMedGoogle Scholar
  32. 32.
    Smith AC, Bruce CR, Dyck DJ: AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle. J Physiol 565: 547–553, 2005CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou M, Lin B-Z, Coughlin S, Vallega G, Pilch PF: UCP-3 expression in skeletal muscle: effects of exercise, hypoxia and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 279: E622–E629, 2000PubMedGoogle Scholar
  34. 34.
    Jessen N, Pold R, Buhl ES, Jensen LS, Schmitz O, Lund S: Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94: 1373–1379, 2003PubMedGoogle Scholar
  35. 35.
    Putman CT, Kiricsi M, Pearcey J, MacLean IM, Bamford JA, Murdoch GK, Dixon WT, Pette D: AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol 551: 169–178, 2003CrossRefPubMedGoogle Scholar
  36. 36.
    Sakoda H, Ogihara T, Anai M, Fujishiro M, Ono H, Onishi Y, Katagiri H, Abe M, Fukushima Y, Shojima N, Inukai K, Kikuchi M, Oka Y, Asano T: Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes. Am J Physiol Endocrinol Metab 282: E1239–E1244, 2002PubMedGoogle Scholar
  37. 37.
    Luiken JJFP, Coort SLM, Koonen DPY, van der Horst DJ, Bonen A, Zorzano A, Glatz JFC: Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Archiv 448: 1–45, 2004CrossRefPubMedGoogle Scholar
  38. 38.
    Koonen DP, Glatz JF, Bonen A, Luiken JJ: Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta 1736: 163–180, 2005PubMedGoogle Scholar
  39. 39.
    Matsuno K, Diaz-Ricard M, Montgomery RR, Aster T, Jamieson GA, Tandon NN: Inhibition of platelet adhesion to collagen by monoclonal anti CD36 antibodies. Br J Haematol 92: 960–967, 1996CrossRefPubMedGoogle Scholar
  40. 40.
    Calles-Escandon J, Sweet L, Ljungqvist O, Hirshman MF: The membrane associated 40 kDa fatty acid binding protein is present in human skeletal muscle. Life Sci 58: 19–28, 1996CrossRefPubMedGoogle Scholar
  41. 41.
    Fischer Y, Rose H, Kammermeier H: Highly insulin responsive isolated rat heart muscle cells yield by a modified isolation method. Life Sci 49: 1679–1688, 1991CrossRefPubMedGoogle Scholar
  42. 42.
    Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy JO: Regulation of GLUT4 biogenesis in muscle:evidence for involvement of AMPK and Ca(2+). Am J Physiol Endocrinol Metab 282: E1008–E1013, 2002PubMedGoogle Scholar
  43. 43.
    Musi N, Hayashi T, Fujii N, Hirshman MF, Witters LA, Goodyear LJ: AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280: E677–E684, 2001PubMedGoogle Scholar
  44. 44.
    Sajan MP, Standaert ML, Bandypadhyay G, Qoun MJ, Burke TR, Farese RV: Protein kinase C-zeta and phosphoinositide-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J Biol Chem 274: 30495–30500, 1999CrossRefPubMedGoogle Scholar
  45. 45.
    Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273: 18623–18632, 1998CrossRefPubMedGoogle Scholar
  46. 46.
    Vlahos CJ, Matter WF, Hui KY, Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269: 5241–5248, 1994PubMedGoogle Scholar
  47. 47.
    Luiken JJFP, van Nieuwenhoven FA, America G, van der Vusse GJ, Glatz JFC: Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: Involvement of sarcolemmal proteins. J Lipid Res 38: 725–758, 1997Google Scholar
  48. 48.
    Coort SL, Luiken JJ, Van Der Vusse GJ, Bonen A, Glatz JF: Increased FAT (fatty acid translocase)/CD36-mediated long-chain fatty acid uptake in cardiac myocytes from obese Zucker rats. Biochem Soc Trans 32: 83–85, 2004CrossRefPubMedGoogle Scholar
  49. 49.
    Luiken JJFP, Turcotte LP, Bonen A: Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res 40: 1007–1016, 1999PubMedGoogle Scholar
  50. 50.
    Soltys CL, Buchholz L, Gandhi M, Clanachan AS, Walsh K, Dyck JR: Phosphorylation of cardiac protein kinase B is regulated by palmitate. Am J Physiol Heart Circ Physiol 2002: H1056–H1064, 2002Google Scholar
  51. 51.
    Bolster DR, Crozier SJ, Kimball SR, Jefferson LS: AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977–23980, 2002CrossRefPubMedGoogle Scholar
  52. 52.
    Winder WW, Hardie DG: AMP-activated protein kinase, a metabolic master switch: Possible roles in type 2 diabetes. Am J Physiol 277: E1–10, 1999PubMedGoogle Scholar
  53. 53.
    Hue L, Beauloye C, Marsin AS, Bertrand L, Horman S, Rider MH: Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol 34: 1091–1097, 2002CrossRefPubMedGoogle Scholar
  54. 54.
    Winder WW, Hardie DG: Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270: E299–E304, 1996PubMedGoogle Scholar
  55. 55.
    Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE, Witters LA, Ruderman NB: Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem 272: 13255–13261, 1997CrossRefPubMedGoogle Scholar
  56. 56.
    Russell RR, 3rd, Bergeron R, Shulman GI, Young LH: Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277: H643–H649, 1999PubMedGoogle Scholar
  57. 57.
    Stump DD, Zhou S-L, Berk PD: Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol Gastrointest Liver Physiol 265: G894–G902, 1993Google Scholar
  58. 58.
    Bradbury MW, Berk PD: Mitochondrial aspartate aminotransferase: Direction of a single protein with two distinct functions to two subcellular sites does not require alternative splicing of the mRNA. Biochem J 345: 423–427, 2000CrossRefPubMedGoogle Scholar
  59. 59.
    Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJFP, Glatz JFC, Bonen A: A novel function for FAT/CD36: involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem 279: 36325–36341, 2004Google Scholar
  60. 60.
    Buhl ES, Jessen N, Schmitz O, Pedersen SB, Pedersen O, Holman GD, Lund S: Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-sc d-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 50: 12–17, 2001PubMedMATHGoogle Scholar
  61. 61.
    Koonen DPY, Coumans WA, Arumugam Y, Bonen A, Glatz JFC, Luiken JJFP: Giant membrane vesicles as a model to study cellular substrate uptake dissected from metabolism. Mol Cell Biochem 239: 121–130, 2002CrossRefPubMedGoogle Scholar
  62. 62.
    Atkinson LL, Fischer MA, Lopaschuk GD: Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem 277: 29424–29430, 2002CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Adrian Chabowski
    • 1
  • Iman Momken
    • 1
  • Susan L. M. Coort
    • 2
  • Jorge Calles-Escandon
    • 3
  • Narendra N. Tandon
    • 4
  • Jan F. C. Glatz
    • 2
  • Joost J. F. P. Luiken
    • 2
  • Arend Bonen
    • 1
  1. 1.Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
  2. 2.Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Section of Endocrinology and MetabolismWake Forest University School of Medicine and Baptist Medical CenterWinston-SalemUSA
  4. 4.Thrombosis Research Laboratory, Otsuka Maryland Medicinal LaboratoriesRockvilleUSA

Personalised recommendations