Advertisement

Molecular and Cellular Biochemistry

, Volume 293, Issue 1–2, pp 53–62 | Cite as

Relative suppression of the sodium-dependent Vitamin C transport in mouse versus human lens epithelial cells

  • Mark E. Obrenovich
  • Xingjun Fan
  • Makoto Satake
  • Simon M. Jarvis
  • Lixing Reneker
  • John R. Reddan
  • Vincent M. Monnier
Article

Abstract

Vitamin C is a major antioxidant and UV absorbent in the human lens. In the rodent lens, the levels are very low for unknown reasons. Searching for clues to explain this suppression, we investigated the comparative uptake of Vitamin C in cultured human and mouse lens epithelial cells. When compared to human HLE-B3 lens epithelial cells, 14C-ASA uptake was 4- to 10-fold impaired in confluent mouse lens 17EM15 (p < 0.0001) and 21EM15 (p < 0.001) cells, respectively. High glucose concentrations reduced the uptake by 30–50% in all cells (p < 0.005). Incubation of cells with 6-deoxy-6-fluoro-ascorbic (F-ASA), i.e. a probe specific for the sodium-dependent Vitamin C uptake (SVCT2), revealed a 10-fold uptake suppression into mouse 17EM15 relative to human HLE-B3 and JAR choriocarcinoma cells (a control), that could be overcome by overexpressing hSVCT2 using two different promoter constructs. The relative Vitamin C uptake differences suggest either low expression of SVCT2, molecular differences between the transporters themselves or their biological regulation, since a recent study has shown that exogenous feeding of ascorbic acid to rats increased only modestly lenticular uptake (Mody et al., Acta Ophthalmol Scand 83: 228–223, 2005). Elucidation of the mechanism by which SCVT2 activity is suppressed in mouse lens may help unravel a major question of evolutionary significance for night vision in nocturnal animals.

Key words

aging ascorbic acid diabetes glycation oxidation SVCT2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monnier VM, Cerami A: Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211: 491–493, 1981PubMedCrossRefGoogle Scholar
  2. 2.
    Bensch KG, Fleming JE, Lohmann W: The role of ascorbic acid in senile cataract. Proc Natl Acad Sci USA 82: 7193–7196, 1985PubMedCrossRefGoogle Scholar
  3. 3.
    Nagaraj RH, Sell DR, Prabhakaram M, Ortwerth BJ, Monnier VM: High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc Natl Acad Sci USA 88: 10257–10261, 1991PubMedCrossRefGoogle Scholar
  4. 4.
    Ortwerth BJ, Linetsky M, Olesen PR: Ascorbic acid glycation of lens proteins produces UVA sensitizers similar to those in human lens. Photochem Photobiol 62: 454–462, 1995PubMedGoogle Scholar
  5. 5.
    Cheng R, Lin B, Lee KW, Ortwerth BJ: Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: Evidence for ascorbic acid glycation during cataract formation. Biochim Biophys Acta 1537: 14–26, 2001PubMedGoogle Scholar
  6. 6.
    Simpson GL, Ortwerth BJ: The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta 1501: 12–24, 2000PubMedGoogle Scholar
  7. 7.
    Madaj J, Nishikawa Y, Reddy VP, Rinaldi P, Kurata T, Monnier VM: 6-Deoxy-6-fluoro-l-ascorbic acid: Crystal structure and oxidative degradation. Carbohydr Res 329: 477–485, 2000PubMedCrossRefGoogle Scholar
  8. 8.
    Satake M, Dmochowska B, Nishikawa Y, Madaj J, Xue J, Guo Z, Reddy DV, Rinaldi PL, Monnier VM: Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy. Invest Ophthalmol Vis Sci 44: 2047–2058, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Nishikawa Y, Dmochowska B, Madaj J, Xue J, Guo Z, Satake M, Reddy DV, Rinaldi PL, Monnier VM: Vitamin C metabolomic mapping in experimental diabetes with 6-deoxy-6-fluoro-ascorbic acid and high resolution 19F-nuclear magnetic resonance spectroscopy. Metabolism 52: 760–770, 2003PubMedCrossRefGoogle Scholar
  10. 10.
    Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M: Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272: 18982–18989, 1997PubMedCrossRefGoogle Scholar
  11. 11.
    Andley UP, Rhim JS, Chylack LT Jr, Fleming TP: Propagation and immortalization of human lens epithelial cells in culture. Invest Ophthalmol Vis Sci 35: 3094–3102, 1994PubMedGoogle Scholar
  12. 12.
    Reddan JR, Kuck JF, Dziedzic DC, Kuck KD, Reddan PR, Wasielewski P: Establishment of lens epithelial cell lines from Emory and cataract resistant mice and their response to hydrogen peroxide. Lens Eye Toxic Res 6: 687–701, 1989PubMedGoogle Scholar
  13. 13.
    Reddan JR, Chepelinsky AB, Dziedzic DC, Piatigorsky J, Goldenberg EM: Retention of lens specificity in long-term cultures of diploid rabbit lens epithelial cells. Differentiation 33: 168–174, 1986PubMedCrossRefGoogle Scholar
  14. 14.
    Liang WJ, Johnson D, Jarvis SM: Vitamin C transport systems of mammalian cells. Mol Membr Biol 18: 87–95, 2001PubMedCrossRefGoogle Scholar
  15. 15.
    Liang WJ, Johnson D, Ma LS, Jarvis SM, Wei-Jun L: Regulation of the human Vitamin C transporters expressed in COS-1 cells by protein kinase C [corrected]. Am J Physiol Cell Physiol 283: C1696–C1704, 2002PubMedGoogle Scholar
  16. 16.
    Reneker LW, Chen Q, Bloch A, Xie L, Schuster G, Overbeek PA: Chick delta1-crystallin enhancer influences mouse alphaA-crystallin promoter activity in transgenic mice. Invest Ophthalmol Vis Sci 45: 4083–4090, 2004PubMedCrossRefGoogle Scholar
  17. 17.
    Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M: 6-Bromo-6-deoxy-l-ascorbic acid: An ascorbate analog specific for Na+-dependent Vitamin C transporter but not glucose transporter pathways. J Biol Chem 280: 5211–5220, 2005PubMedCrossRefGoogle Scholar
  18. 18.
    Tumminia SJ, Qin C, Zigler JS Jr, Russell P: The integrity of mammalian lenses in organ culture. Exp Eye Res 58: 367–374, 1994PubMedCrossRefGoogle Scholar
  19. 19.
    Varma SD: Ascorbic acid and the eye with special reference to the lens. Ann NY Acad Sci 498: 280–306, 1987PubMedGoogle Scholar
  20. 20.
    Varma SD, Richards RD: Ascorbic acid and the eye lens. Ophthalmic Res 20: 164–173, 1988PubMedGoogle Scholar
  21. 21.
    Hegde KR, Varma SD: Protective effect of ascorbate against oxidative stress in the mouse lens. Biochim Biophys Acta 1670: 12–18, 2004PubMedGoogle Scholar
  22. 22.
    Mody VC Jr, Kakar M, Elfving A, Soderberg PG, Lofgren S: Ascorbate in the rat lens: dependence on dietary intake. Ophthalmic Res 37: 142–149, 2005PubMedCrossRefGoogle Scholar
  23. 23.
    Mody VC Jr, Kakar M, Elfving A, Soderberg PG, Lofgren S: Ascorbate in the guinea pig lens: dependence on drinking water supplementation. Acta Ophthalmol Scand 83: 228–233, 2005PubMedCrossRefGoogle Scholar
  24. 24.
    Kannan R, Stolz A, Ji Q, Prasad PD, Ganapathy V: Vitamin C transport in human lens epithelial cells: evidence for the presence of SVCT2. Exp Eye Res 73: 159–165, 2001PubMedCrossRefGoogle Scholar
  25. 25.
    Berger TM, Polidori MC, Dabbagh A, Evans PJ, Halliwell B, Morrow JD, Roberts II LJ, Frei B: Antioxidant activity of Vitamin C in iron-overloaded. J Biol Chem 272: 15656–15660, 1997PubMedCrossRefGoogle Scholar
  26. 26.
    Koya D, King GL: Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859–866, 1998PubMedGoogle Scholar
  27. 27.
    Delamere NA, Coca-Prados M, Aggarwal S: Studies on regulation of the ascorbic acid transporter in a cell line derived from rabbit non-pigmented ciliary epithelium. Biochim Biophys Acta 1149: 102–108, 1993PubMedCrossRefGoogle Scholar
  28. 28.
    Kuo SM, MacLean ME, McCormick K, Wilson JX: Gender and sodium-ascorbate transporter isoforms determine ascorbate concentrations in mice. J Nutr 134: 2216–2221, 2004PubMedGoogle Scholar
  29. 29.
    Pirie A, Van Heyningen R: Biochemistry of the Eye. Thomas, Springfield, IL, 1956, pp 24–28Google Scholar
  30. 30.
    Lutsenko EA, Carcamo JM, Golde DW: A human sodium-dependent Vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Mol Cell Biol 24: 3150–3156, 2004PubMedCrossRefGoogle Scholar
  31. 31.
    Reiss GR, Werness PG, Zollman PE, Brubaker RF: Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthalmol 104: 753–755, 1986PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Mark E. Obrenovich
    • 1
  • Xingjun Fan
    • 1
  • Makoto Satake
    • 1
    • 7
  • Simon M. Jarvis
    • 3
  • Lixing Reneker
    • 4
  • John R. Reddan
    • 5
  • Vincent M. Monnier
    • 1
    • 2
    • 6
  1. 1.Department of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.Department of BiochemistryCase Western Reserve UniversityClevelandUSA
  3. 3.Research School of BiosciencesUniversity of WestminsterLondonUK
  4. 4.Department of OphthalmologyUniversity of MissouriColumbiaUSA
  5. 5.Department of Biological SciencesOakland UniversityRochesterUSA
  6. 6.Institute of PathologyCase Western Reserve UniversityClevelandUSA
  7. 7.Tissue Engineering LaboratoryInnovation Research Institute, Teijin Ltd.TokyoJapan

Personalised recommendations