Molecular and Cellular Biochemistry

, Volume 283, Issue 1–2, pp 57–66 | Cite as

Sterol carrier protein-2 expression alters sphingolipid metabolism in transfected mouse L-cell fibroblasts

  • Daniel G. Milis
  • Messiah K. Moore
  • Barbara P. Atshaves
  • Friedhelm Schroeder
  • John R. Jefferson


The influence of sterol carrier protein-2 (SCP-2) on the cellular metabolism of sphingolipids was examined in control mouse L-cells and stably transfected clones expressing the protein SCP-2. Three approaches were used to examine for differences; (1) compositional analysis of endogenous sphingolipid classes, (2) metabolism of NBD-ceramide, and (3) live cell labelling via endocytic uptake of BODIPY-sphingomyelin. SCP-2 over expression significantly altered the endogenous levels of both neutral and acidic sphingolipid classes. Among the neutral sphingolipids, expression of SCP-2 induced a 1.7-fold increase in the level of lactosylceramide (LacCer, p < 0.05) and a similar fold decrease in the level of the higher-order neutral glycosylceramides (p < 0.05). Among the acidic sphingolipids, SCP-2 resulted in a 5.2-fold decrease in the endogenous plasma membrane level of ganglioside GM1 (p < 0.03). Incubation of both control and transfected cell lines with NBD-ceramide resulted in the rapid establishment of a steady-state distribution of NBD-labelled sphingomyelin (NBD-SM) and glucosylceramide (NBD-GlcCer). In the SCP-2 expressing clones the conversion of NBD-Cer to NBD-GlcCer was 30% lower during incubation periods between 5 and 30 min (p < 0.025). Inspection of the cells by fluorescence microscopy after incubation with BODIPY labelled sphingomyelin (BODIPY-SM) revealed similar punctuated patterns with no distinguishable differences between the cell types. These results imply that SCP-2 plays a role in modulating enzymatic steps involved in metabolism of sphingolipid homeostasis.

Key Words

SCP-2 sphingolipids glycosphingolipids LacCer caveolae lipid rafts L cell 



sterol carrier protein-2


sphingolipid activator protein


bovine serum albumin


defatted BSA


hepes buffered minimum essential media


phosphate buffered saline


boron dipyrromethenedi-fluoride


N-[7-(4-nitrobenzo-2-oxa-1,2-diazole)]-6-aminocaproyl-, NDB-Cer, N-[7-(4-nitrobenzo-2-oxa-1,2-diazole)]-6-aminocaproyl-D-erythro-sphingosine






co-enzyme A


ceramide glucosyltransferase


















thin layer chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hannun YA, Bell RM: Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243: 500–507, 1989PubMedGoogle Scholar
  2. 2.
    Ghosh S, Strum JC, Bell RM: Lipid biochemistry: Functions of glycerolipids and sphingolipids in cellular signaling. FASEB J 11: 45–50, 1997PubMedGoogle Scholar
  3. 3.
    Hakomori S: Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 10: 16–24, 2003CrossRefPubMedGoogle Scholar
  4. 4.
    Foster LJ, De Hoog CL, Mann M: Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci U S A 100: 5813–5818, 2003CrossRefPubMedGoogle Scholar
  5. 5.
    Sandvig K, van Deurs B: Endocytosis and intracellular transport of ricin: Recent discoveries. FEBS Lett 452: 67–70, 1999CrossRefPubMedGoogle Scholar
  6. 6.
    Chazal NGD: Virus entry, assembly, budding, and membrane reafts. Microbiol Mol Biol Rev 226–237, 2003Google Scholar
  7. 7.
    Bavari S, Bosio CM, Wiegand E, Ruthel G, Will AB, Geisbert TW, Hevey M, Schmaljohn C, Schmaljohn A, Aman MJ: Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195: 593–602, 2002CrossRefPubMedGoogle Scholar
  8. 8.
    Empig CJ, Goldsmith MA: Association of the caveola vesicular system with cellular entry by filoviruses. J Virol 76: 5266–5270, 2002CrossRefPubMedGoogle Scholar
  9. 9.
    Marjomaki V, Pietiainen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypia T, Heino J: Internalization of echovirus 1 in caveolae. J Virol 76: 1856–1865, 2002CrossRefPubMedGoogle Scholar
  10. 10.
    Scheiffele P, Roth MG, Simons K: Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16: 5501–5508, 1997CrossRefPubMedGoogle Scholar
  11. 11.
    Marsh M, Pelchen-Matthews A: Endocytosis in viral replication. Traffic 1: 525–532, 2000CrossRefPubMedGoogle Scholar
  12. 12.
    Sieczkarski SB, Whittaker GR: Dissecting virus entry via endocytosis. J Gen Virol 83: 1535–1545, 2002PubMedGoogle Scholar
  13. 13.
    Shin J-SaA, S.N.: Caveolae as portals of entry for microbes. Microbes and Infection 3: 755–761, 2002Google Scholar
  14. 14.
    Norkin LC: Caveolae in the uptake and targeting of infectious agents and secreted toxins. Adv Drug Deliv Rev 49: 301–315, 2001CrossRefPubMedGoogle Scholar
  15. 15.
    Anderson RG, Jacobson K: A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296: 1821–1825, 2002CrossRefPubMedGoogle Scholar
  16. 16.
    Stolowich NJ, Petrescu AD, Huang H, Martin GG, Scott AI, Schroeder F: Sterol carrier protein-2: Structure reveals function. Cell Mol Life Sci 59: 193–212, 2002PubMedGoogle Scholar
  17. 17.
    Stolowich N, Frolov A, Petrescu AD, Scott AI, Billheimer JT, Schroeder F: Holo-sterol carrier protein-2. (13)C NMR investigation of cholesterol and fatty acid binding sites. J Biol Chem 274: 35425–35433, 1999CrossRefPubMedGoogle Scholar
  18. 18.
    Schroeder F, Frolov A, Schoer, J, Gallegos A, Atshaves BP, Stolowich NJ, Scott AI, Kier AB: Intracellular cholesterol binding proteins, cholesterol transport and membrane domains. In: Freeman TYCaDA (ed) Intracellular Cholesterol Trafficking. Kluwer Academic Publishers, Boston, 1998, pp 213–234Google Scholar
  19. 19.
    Avdulov NA, Chochina SV, Igbavboa U, Warden CS, Schroeder F, Wood WG: Lipid binding to sterol carrier protein-2 is inhibited by ethanol. Biochim Biophys Acta 1437: 37–45, 1999PubMedGoogle Scholar
  20. 20.
    Schroeder F, Myers-Payne SC, Billheimer JT, Wood WG: Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol. Biochemistry 34: 11919–11927, 1995CrossRefPubMedGoogle Scholar
  21. 21.
    Stolowich NJ, Frolov A, Atshaves B, Murphy EJ, Jolly CA, Billheimer JT, Scott AI, Schroeder F: The sterol carrier protein-2 fatty acid binding site: An NMR, circular dichroic, and fluorescence spectroscopic determination. Biochemistry 36: 1719–1729, 1997CrossRefPubMedGoogle Scholar
  22. 22.
    Frolov A, Cho TH, Billheimer JT, Schroeder F: Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein. J Biol Chem 271: 31878–31884, 1996PubMedGoogle Scholar
  23. 23.
    Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F: Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 40: 498–563, 2001PubMedGoogle Scholar
  24. 24.
    Wirtz KW: Phospholipid transfer proteins revisited. Biochem J 324 (Pt 2): 353–360, 1997PubMedGoogle Scholar
  25. 25.
    Bloj B, Zilversmit DB: Rat liver proteins capable of transferring phosphatidylethanolamine. Purification and transfer activity for other phospholipids and cholesterol. J Biol Chem 252: 1613–1619, 1977PubMedGoogle Scholar
  26. 26.
    Bloj B, Zilversmit DB: Accelerated transfer of neutral glycosphingolipids and ganglioside GM1 by a purified lipid transfer protein. J Biol Chem 256: 5988–5991, 1981PubMedGoogle Scholar
  27. 27.
    Chao H, Zhou M, McIntosh A, Schroeder F, Kier AB: ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT. J Lipid Res 44: 72–83, 2003PubMedGoogle Scholar
  28. 28.
    Starodub O, Jolly CA, Atshaves BP, Roths JB, Murphy EJ, Kier AB, Schroeder F: Sterol carrier protein-2 localization in endoplasmic reticulum and role in phospholipid formation. Am J Physiol Cell Physiol 279: C1259–1269, 2000PubMedGoogle Scholar
  29. 29.
    Moncecchi D, Murphy EJ, Prows DR, Schroeder F: Sterol carrier protein-2 expression in mouse L-cell fibroblasts alters cholesterol uptake. Biochim Biophys Acta 1302: 110–116, 1996PubMedGoogle Scholar
  30. 30.
    McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F: Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40: 1371–183, 1999PubMedGoogle Scholar
  31. 31.
    Murphy EJ: Sterol carrier protein-2 expression increases NBD-stearate uptake and cytoplasmic diffusion in L cells. Am J Physiol 275: G237–243, 1998PubMedGoogle Scholar
  32. 32.
    Puglielli L, Rigotti A, Greco AV, Santos MJ, Nervi F: Sterol carrier protein-2 is involved in cholesterol transfer from the endoplasmic reticulum to the plasma membrane in human fibroblasts. J Biol Chem 270: 18723–18726, 1995PubMedGoogle Scholar
  33. 33.
    Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Schroeder F: Sterol carrier protein-2 expression alters plasma membrane lipid distribution and cholesterol dynamics. Biochemistry 40: 6493–6506, 2001CrossRefPubMedGoogle Scholar
  34. 34.
    Murphy EJ, Schroeder F: Sterol carrier protein-2 mediated cholesterol esterification in transfected L-cell fibroblasts. Biochim Biophys Acta 1345: 283–292, 1997PubMedGoogle Scholar
  35. 35.
    Murphy EJ, Stiles T, Schroeder F: Sterol carrier protein-2 expression alters phospholipid content and fatty acyl composition in L-cell fibroblasts. J Lipid Res 41: 788–796, 2000PubMedGoogle Scholar
  36. 36.
    Schroeder F, Zhou M, Swaggerty CL, Atshaves BP, Petrescu AD, Storey SM, Martin GG, Huang H, Helmkamp GM, Ball JM: Sterol carrier protein-2 functions in phosphatidylinositol transfer and signaling. Biochemistry 42: 3189–3202, 2003PubMedGoogle Scholar
  37. 37.
    Marks DL, Dominguez M, Wu K, Pagano RE: Identification of active site residues in glucosylceramide synthase. A nucleotide-binding catalytic motif conserved with processive beta-glycosyltransferases. J Biol Chem 276: 26492–26498, 2001CrossRefPubMedGoogle Scholar
  38. 38.
    Atshaves BP, Petrescu AD, Starodub O, Roths JB, Kier AB, Schroeder F: Expression and intracellular processing of the 58 kDa sterol carrier protein-2/3-oxoacyl-CoA thiolase in transfected mouse L-cell fibroblasts. J Lipid Res 40: 610–622, 1999PubMedGoogle Scholar
  39. 39.
    van Echten-Deckert G: Sphingolipid extraction and analysis by thin-layer chromatography. Methods Enzymol 312: 64–79, 2000PubMedGoogle Scholar
  40. 40.
    van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K: Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur J Cell Biol 51: 135–139, 1990PubMedGoogle Scholar
  41. 41.
    Schwarzmann G, Hofmann P, Putz U, Albrecht B: Demonstration of direct glycosylation of nondegradable glucosylceramide analogs in cultured cells. J Biol Chem 270: 21271–21276, 1995PubMedGoogle Scholar
  42. 42.
    Puri V, Jefferson JR, Singh RD, Wheatley CL, Marks DL, Pagano RE: Sphingolipid Storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. J Biol Chem 278: 20961–20970, 2003CrossRefPubMedGoogle Scholar
  43. 43.
    Tietz P, Jefferson J, Pagano R, Larusso NF: Membrane microdomains in hepatocytes: Potential target areas for proteins involved in canalicular bile secretion. J Lipid Res 46: 1426–1432, 2005PubMedGoogle Scholar
  44. 44.
    Mazzone A: Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of hepatocyte. submitted to Hepatology, 2005Google Scholar
  45. 45.
    Atshaves BP, Gallegos AM, McIntosh AL, Kier AB, Schroeder F: Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs. nonraft domains in L-cell fibroblast plasma membranes. Biochemistry 42: 14583–14598, 2003CrossRefPubMedGoogle Scholar
  46. 46.
    van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ: Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277: 39541–39547, 2002CrossRefPubMedGoogle Scholar
  47. 47.
    Marks DL, Paul P, Kamisaka Y, Pagano RE: Methods for studying glucosylceramide synthase. Methods Enzymol 311: 50–59, 2000PubMedGoogle Scholar
  48. 48.
    Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917, 1959PubMedGoogle Scholar
  49. 49.
    Puri V, Watanabe R, Singh RD, Dominguez M, Brown JC, Wheatley CL, Marks DL, Pagano RE: Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol 154: 535–547, 2001CrossRefPubMedGoogle Scholar
  50. 50.
    Pagano RE, Watanabe R, Wheatley C, Dominguez M: Applications of BODIPY-sphingolipid analogs to study lipid traffic and metabolism in cells. Methods Enzymol 312: 523–534, 2000PubMedGoogle Scholar
  51. 51.
    Chen CS, Martin OC, Pagano RE: Changes in the spectral properties of a plasma membrane lipid analog during the first seconds of endocytosis in living cells. Biophys J 72: 37–50, 1997PubMedGoogle Scholar
  52. 52.
    Smart EJ: Scavenger receptors, caveolae, caveolin, and cholesterol trafficking. In: Freeman TYCaDA (ed) Intracellular cholesterol trafficking. Kluwer Academic Publishers, Boston, 1998, pp 253–272Google Scholar
  53. 53.
    Giudici ML, Vos JP, Marchesini S, Van Golde LM, Lopes-Cardozo M: Uptake and metabolism of fluorescent ceramide analogs by rat oligodendrocytes in culture. FEBS Lett 314: 471–476, 1992CrossRefPubMedGoogle Scholar
  54. 54.
    Merrill AH, Jr, Jones DD: An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta 1044: 1–12, 1990PubMedGoogle Scholar
  55. 55.
    Leppimaki P, Kronqvist R, Slotte JP: The rate of sphingomyelin synthesis de novo is influenced by the level of cholesterol in cultured human skin fibroblasts. Biochem J 335: 285–291, 1998PubMedGoogle Scholar
  56. 56.
    Voet D. aVJG: Biochemistry. Wiley, New York, 1995, pp. 717– 725Google Scholar
  57. 57.
    Devlin TM: Textbook of Biochemsitry. Wiley-Liss, New York, 1992, pp. 449–461Google Scholar
  58. 58.
    Ferlinz K, Linke T, Bartelsen O, Weiler M, Sandhoff K: Stimulation of lysosomal sphingomyelin degradation by sphingolipid activator proteins. Chem Phys Lipids 102: 35–43, 1999PubMedGoogle Scholar
  59. 59.
    Sadeghlar F, Remmel N, Breiden B, Klingenstein R, Schwarzmann G, Sandhoff K: Physiological relevance of sphingolipid activator proteins in cultured human fibroblasts. Biochimie 85: 439–448, 2003CrossRefPubMedGoogle Scholar
  60. 60.
    Lloyd-Evans E, Pelled D, Riebeling C, Bodennec J, De-Morgan A, Waller H, Schiffmann R, Futerman AH: Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem 278: 23594–23599, 2003CrossRefPubMedGoogle Scholar
  61. 61.
    Hummel I, Klappe K, Kok JW: Up-regulation of lactosylceramide synthase in MDR1 overexpressing human liver tumour cells. FEBS Lett 579: 3381–3384, 2005CrossRefPubMedGoogle Scholar
  62. 62.
    Yamamoto R, Kallen CB, Babalola GO, Rennert H, Billheimer JT, Strauss JF, 3rd: Cloning and expression of a cDNA encoding human sterol carrier protein 2. Proc Natl Acad Sci U S A 88: 463–467, 1991PubMedGoogle Scholar
  63. 63.
    Seedorf U, Assmann G: Cloning, expression, and nucleotide sequence of rat liver sterol carrier protein 2 cDNAs. J Biol Chem 266: 630–636, 1991PubMedGoogle Scholar
  64. 64.
    Keller GA, Scallen TJ, Clarke D, Maher PA, Krisans SK, Singer SJ: Subcellular localization of sterol carrier protein-2 in rat hepatocytes: Its primary localization to peroxisomes. J Cell Biol 108: 1353–1361, 1989CrossRefPubMedGoogle Scholar
  65. 65.
    Kovacs WJ, Olivier LM, Krisans SK: Central role of peroxisomes in isoprenoid biosynthesis. Prog Lipid Res 41: 369–391, 2002PubMedGoogle Scholar
  66. 66.
    van der Klei I, Veenhuis M: Peroxisomes: Flexible and dynamic organelles. Curr Opin Cell Biol 14: 500–505, 2002CrossRefPubMedGoogle Scholar
  67. 67.
    Saito M, Iwamori M, Lin B, Oka A, Fujiki Y, Shimozawa N, Kamoshita S, Yanagisawa M, Sakakihara Y: Accumulation of glycolipids in mutant Chinese hamster ovary cells (Z65) with defective peroxisomal assembly and comparison of the metabolic rate of glycosphingolipids between Z65 cells and wild-type CHO-K1 cells. Biochim Biophys Acta 1438: 55–62, 1999PubMedGoogle Scholar
  68. 68.
    Ardail D, Popa I, Bodennec J, Louisot P, Schmitt D, Portoukalian J: The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem J 371: 1013–1019, 2003CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Daniel G. Milis
    • 1
  • Messiah K. Moore
    • 1
  • Barbara P. Atshaves
    • 2
  • Friedhelm Schroeder
    • 2
  • John R. Jefferson
    • 1
  1. 1.Department of ChemistryLuther CollegeDecorah
  2. 2.Department of Physiology and PharmacologyTexas A&M University, TVMCCollege Station

Personalised recommendations