Molecular and Cellular Biochemistry

, Volume 281, Issue 1–2, pp 63–75 | Cite as

mRNA differential display identification of vascular smooth muscle early response genes regulated by PDGF

  • Joe O. Minta
  • James J. Yun
  • Oluyomi Kabiawu
  • Jabbal Jones


The modulation of vascular smooth muscle cells (VSMCs) from the quiescent phenotype to the proliferative and migratory phenotype is a critical event in the pathogenesis of atherosclerosis. To-date several growth factors, including platelet-derived growth factor, PDGF, have been shown to induce VSMC proliferation and migration. To further understand the mechanism of PDGF-induced VSMC activation, quiescent human coronary artery SMC were treated with PDGF, and the genes that displayed transcriptional changes within 3 and 8 h were identified using differential display RT-PCR, real-time PCR, nucleotide sequencing and bioinformatics. Eleven genes that were highly upregulated or down-regulated at 3 and/or 8 h by PDGF, designated growth-factor regulated VSMC genes (GRSG1-11), were analyzed. GRSG5 and GRSG9-1 were identified as cortactin and cytochrome c oxidase subunit II, respectively. The remaining nine GRSGs were novel. GRSG3, 4, 5 and 9-2 showed wide tissue distribution whereas GRSG10-1, 10-2, and 11 were tissue specific. Cortactin was localized by immunohistochemical staining to the neointima and fibrous cap of human coronary artery atherosclerotic plaques. Domain analysis of open reading frames suggest that the novel GRSGs may participate in signaling, metabolic, translational or migrational processes during PDGF-induced VSMC activation.


atherosclerosis gene regulation platelet-derived growth factor vascular smooth muscle cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross R: Atherosclerosis – An inflammatory disease. N Engl J Med 340: 115–126, 1999CrossRefPubMedGoogle Scholar
  2. 2.
    Mulvihill ER, Jaeger J, Sengupta R, Ruzzo WL, Reimer C, Lukito S, Schwartz SM: Atherosclerotic plaque smooth muscle cells have a distinct phenotype. Arterioscler Thromb Vasc Biol 24: 1–7, 2004Google Scholar
  3. 3.
    Zhao M, Liu Y, Bao M, Kato Y, Han J, Eaton JW: Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. Arch Biochem Biophys 400: 199–207, 2002CrossRefPubMedGoogle Scholar
  4. 4.
    Hughes AD, Clunn GF, Refson J, Demoliou-Mason C: Platelet-derived growth factor (PDGF): actions and mechanisms in vascular smooth muscle. Gen Pharmac 27: 1079–1089, 1996Google Scholar
  5. 5.
    Dandré F, Owens GK: Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am J Physiol Heart Circ Physiol 286: H2042–H2051, 2004PubMedGoogle Scholar
  6. 6.
    Heldin CH, Westermark B: Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79: 1283–1316, 1999PubMedGoogle Scholar
  7. 7.
    Berk BC: Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev 81: 999–1030, 2001PubMedGoogle Scholar
  8. 8.
    Kaplan-Albuquerque N, Garat C, Van Putten V, Nemenoff RA: Regulation of SM22 alpha expression by arginine vasopressin and PDGF-BB in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 285: H1444–H1452, 2003PubMedGoogle Scholar
  9. 9.
    Shimada M, Inaba T, Shimano H, Gotoda T, Watanabe Y, Yamamoto K, Motoyoshi K, Yazaki Y, Yamada N: Platelet-derived growth factor BB-dimer suppresses the expression of macrophage colony-stimulating factor in human vascular smooth muscle cells. J Biol Chem 267: 15455–15458, 1992PubMedGoogle Scholar
  10. 10.
    Servant MJ, Coulombe P, Turgeon B, Meloche S: Differential regulation of p27(Kip1) expression by mitogenic and hypertrophic factors: involvement of transcriptional and posttranscriptional mechanisms. J Cell Biol 148: 543–556, 2000CrossRefPubMedGoogle Scholar
  11. 11.
    Scott-Burden T, Elizondo E, Ge T, Boulanger CM, Vanhoutte PM: Growth factor regulation of interleukin-1 beta-induced nitric oxide synthase and GTP: cyclohydrolase expression in cultured smooth muscle cells. Biochem Biophys Res Commun 196: 1261–1266, 1993PubMedGoogle Scholar
  12. 12.
    Nishimura J, Kobayashi S, Shikasho T, Kanaide H: Platelet derived growth factor induces c-fos and c-myc mRNA in rat aortic smooth muscle cells in primary culture without elevation of intracellular Ca2+ concentration. Biochem Biophys Res Commun 188: 1198–1204, 1992PubMedGoogle Scholar
  13. 13.
    Tamm M, Bihl M, Eickelberg O, Stulz P, Perruchoud AP, Roth M: Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol 19: 653–661, 1998PubMedGoogle Scholar
  14. 14.
    Poon M, Hsu WC, Bogdanov VY, Taubman MB: Secretion of monocyte chemotactic activity by cultured rat aortic smooth muscle cells in response to PDGF is due predominantly to the induction of JE/MCP-1. Am J Pathol 149: 307–317, 1996PubMedGoogle Scholar
  15. 15.
    Nauck M, Roth M, Tamm M, Eickelberg O, Wieland H, Stulz P, Perruchoud AP: Induction of vascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids. Am J Respir Cell Mol Biol 16: 398–406, 1997PubMedGoogle Scholar
  16. 16.
    Amento EP, Ehsani N, Palmer H, Libby P: Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11: 1223–1230, 1991PubMedGoogle Scholar
  17. 17.
    Cho A, Graves J, Reidy MA: Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20: 2527–2532, 2000PubMedGoogle Scholar
  18. 18.
    Bond M, Chase AJ, Baker AH, Newby AC: Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50: 556–565, 2001CrossRefPubMedGoogle Scholar
  19. 19.
    Page K, Li J, Wang Y, Kartha S, Pestell RG, Hershenson MB: Regulation of cyclin D(1) expression and DNA synthesis by phosphatidylinositol 3-kinase in airway smooth muscle cells. Am J Respir Cell Mol Biol 23: 436–443, 2000PubMedGoogle Scholar
  20. 20.
    Morisaki N, Takahashi K, Shiina R, Zenibayashi M, Otabe M, Yoshida S, Saito Y: Platelet-derived growth factor is a potent stimulator of expression of intercellular adhesion molecule-1 in human arterial smooth muscle cells. Biochem Biophys Res Commun 200: 612–618, 1994CrossRefPubMedGoogle Scholar
  21. 21.
    Liang P: Analysis of messenger RNA by differential display. In: P.A. Krieg (ed) A laboratory guide to RNA isolation analysis and synthesis. A John Wiley & Sons, Inc., New York, 1996, pp 223–236Google Scholar
  22. 22.
    Peerschke EI, Minta JO, Zhou SZ, Bini A, Gotlieb A, Colman RW, Ghebrehiwet B: Expression of gC1q-R/p33 and its major ligands in human atherosclerotic lesions. Mol Immunol 41: 759–766, 2004CrossRefPubMedGoogle Scholar
  23. 23.
    Wu H, Parsons JT: Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120: 1417–1426, 1993PubMedGoogle Scholar
  24. 24.
    Power MD, Kiefer MC, Barr PJ, Reeves R: Nucleotide sequence of human mitochondrial cytochrome c oxidase II cDNA. Nucleic Acids Res 17: 6734, 1989PubMedGoogle Scholar
  25. 25.
    Maestrini E, Tamagnone L, Longati P, Cremona O, Gulisano M, Bione S, Tamanini F, Neel BG, Toniolo D, Comoglio PM: A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Nat Acad Sci 93: 674–678, 1996PubMedCrossRefGoogle Scholar
  26. 26.
    Ohta K, Mizutani A, Kawakami A, Murakami Y, Kasuya Y, Takagi S, Tanaka H, Fujisawa H: Plexin: A novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions. Neuron 14: 1189–1199, 1995CrossRefPubMedGoogle Scholar
  27. 27.
    Wilkin DJ, Kutsunai SY, Edwards PA: Isolation and sequence of the human farnesyl pyrophosphate synthetase cDNA. Coordinate regulation of the mRNAs for farnesyl pyrophosphate synthetase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and 3-hydroxy-3-methylglutaryl coenzyme A synthase by phorbol ester. J Biol Chem 15: 4607–4614, 1990Google Scholar
  28. 28.
    Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM: Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 272: 14093–14097, 1997CrossRefPubMedGoogle Scholar
  29. 29.
    Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, Blalock WL, Franklin R, McCubrey JA: Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 22: 469–480, 2003PubMedGoogle Scholar
  30. 30.
    Qian Z, Wilusz J: GRSF-1: a poly(A)+ mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res 22: 2334–2343, 1994PubMedGoogle Scholar
  31. 31.
    Kash JC, Cunningham DM, Smit MW, Park Y, Fritz D, Wilusz J, Katze MG: Selective translation of eukaryotic mRNAs: Functional molecular analysis of GRSF-1, a positive regulator of influenza virus protein synthesis. J Virol 76: 10417–10426, 2002CrossRefPubMedGoogle Scholar
  32. 32.
    Sonenberg N, Hershey JWB, Mathews MB: Translational Control of Gene Expression, 2nd edn., Cold Spring Harbour Laboratory Press, Cold Spring Harbor, New York, 2000Google Scholar
  33. 33.
    Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA; Mammalian Gene Collection Program Team: Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99: 16899–16903, 2002PubMedGoogle Scholar
  34. 34.
    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36: 40–45, 2004CrossRefPubMedGoogle Scholar
  35. 35.
    Lemmon MA, Ferguson KM, Abrams CS: Pleckstrin homology domains and the cytoskeleton. FEBS Lett 513: 71–76, 2002CrossRefPubMedGoogle Scholar
  36. 36.
    Cozier GE, Carlton J, Bouyoucef D, Cullen PJ: Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 282: 49–88, 2004PubMedGoogle Scholar
  37. 37.
    Attardi G, Chomyn A, Doolittle RF, Mariottini P, Ragan CI: Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase. Cold Spring Harb Symp Quant Biol 51: Pt 1: 103–114, 1986PubMedGoogle Scholar
  38. 38.
    Ragan CI: Structure of NADH-ubiquinone reductase (Complex I). Curr Top Bioenerg 15: 1–36, 1987Google Scholar
  39. 39.
    Weed SA, Parsons JT: Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20: 6418–6434, 2001CrossRefPubMedGoogle Scholar
  40. 40.
    Vojtek AB, Der CJ: Increasing complexity of the Ras signaling pathway. J Biol Chem 273: 19925–19928, 1998CrossRefPubMedGoogle Scholar
  41. 41.
    Patel AS, Schechter GL, Wasilenko WJ, Somers KD: Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 16: 3227–3232, 1998CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Joe O. Minta
    • 1
    • 2
  • James J. Yun
    • 1
  • Oluyomi Kabiawu
    • 1
  • Jabbal Jones
    • 1
  1. 1.Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Department of Laboratory Medicine and Pathobiology, Faculty of MedicineTorontoCanada

Personalised recommendations