Skip to main content

Advertisement

Log in

Iron-loaded cardiac myocytes stimulate cardiac myofibroblast DNA synthesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac fibrosis in iron overload disorders may arise from activation of the interstitial fibroblast. However, the cardiac myocyte, and not the fibroblast, is the main target for iron deposition. We hypothesized that fibroblasts respond to the presence of iron-loaded myocytes with increased proliferative capacity. Cardiac fibroblasts were either co-cultured with myocytes on porous filters or treated with medium conditioned by growth of myocyte cultures. In both circumstances myocytes suppressed [3H]thymidine incorporation by fibroblasts over 24 h, compared to stimulation of quiescent fibroblasts with fresh, unconditioned medium. However, when the myocytes were preloaded with iron, the suppressive effect was lost and DNA synthesis was restored to levels seen in unconditioned medium. This effect was not due to early events in cell cycle entry; activation of Erk at 15 min and expression of c-fos mRNA at 30 min were similar in media from control and iron-loaded myocytes. Early markers of progression of G1, namely cyclin D and phosphoretinoblastoma protein, were not significantly different in fibroblasts treated with either conditioned medium. However, cyclin E expression, a marker of the G1/S transition, was significantly increased by conditioned medium from the iron-loaded cells, compared to control-conditioned medium. We conclude that myocytes can suppress proliferation of fibroblasts by cumulative effects on late G1 events leading to DNA synthesis, and these effects are diminished with myocyte iron accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews NC: Medical progress: disorders of iron metabolism. N Engl J Med 341: 1986–1995, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH: l-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nature Med 9: 1187–1194, 2003

    Article  PubMed  CAS  Google Scholar 

  3. Buja L, Roberts W: Iron in the heart: Etiology and clinical significance. Am J Med 51: 209–221, 1971

    Article  PubMed  CAS  Google Scholar 

  4. Engle MA, Erlandson M, Smith CH: Late cardiac complications of chronic, severe, refractory anemia with hemochromatosis. Circulation 30: 698–705, 1964

    PubMed  CAS  Google Scholar 

  5. Olivieri NF, Brittenham GM: Iron-chelating therapy and the treatment of thalassemia. Blood 89: 739–761, 1997

    PubMed  CAS  Google Scholar 

  6. Peng CT, Chow KC, Chen JH, Chiang YP, Lin TY, Tsai CH: Safety monitoring of cardiac and hepatic systems in β-thalassemia patients with chelating treatment in Taiwan. Eur J Haematol 70: 392–397, 2003

    Article  PubMed  CAS  Google Scholar 

  7. Adams PC: Hemochromatosis: the irony of population screening. Scand J Gastroenterol 36: 1009–1010, 2001

    Article  PubMed  CAS  Google Scholar 

  8. Carthew P, Smith AG, Hider RC, Dorman B, Edwards RB, Francis JE: Potentiation of iron accumulation in cardiac myocytes during the treatment of iron overload in gerbils with the hydroxypyridinone iron chelator CP94. Biometals 7: 267–271, 1994

    Article  PubMed  CAS  Google Scholar 

  9. Lombardo T, Tamburino C, Bartoloni G, Morrone ML, Frontini V, Italia F, Cordaro S, Privitera A, Calvi V: Cardiac iron overload in thalassemic patients: an endomyocardial biopsy study. Ann Hematol 71: 135–141, 1995

    Article  PubMed  CAS  Google Scholar 

  10. Short EM, Winkle RA, Billingham ME: Myocardial involvement in idiopathic hemochromatosis. Morphologic and clinical improvement following venisection. Am J Med 70: 1275–1279, 1981

    Article  PubMed  CAS  Google Scholar 

  11. Zak R: Cell proliferation during cardiac growth. Am J Cardiol 31: 211–219, 1973

    Article  PubMed  CAS  Google Scholar 

  12. Nag AC: Study of non-muscle cells in the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28: 41–61, 1980

    PubMed  CAS  Google Scholar 

  13. Sigel AV, Centrella M, Eghbali-Webb M: Regulation of proliferative response of cardiac fibroblasts by transforming growth factor-β1. J Mol Cell Cardiol 28: 1921–1929, 1996

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Parkes JG, Templeton DM: Differential accumulation of non-transferrin-bound iron by cardiac myocytes and fibroblasts. J Mol Cell Cardiol 35: 505–514, 2003

    Article  PubMed  CAS  Google Scholar 

  15. Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B: Differential effects of transforming growth factor-β1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res 69: 483–490, 1991

    PubMed  CAS  Google Scholar 

  16. Long CS, Henrich CJ, Simpson PC: A growth factor for cardiac myocytes is produced by cardiac nonmyocytes. Cell Regul 2: 1081–1095, 1991

    PubMed  CAS  Google Scholar 

  17. Gabbiani G: The biology of the myofibroblast. Kidney Int 41: 530–532, 1992

    Article  PubMed  CAS  Google Scholar 

  18. Desmoulière A, Darby IA, Gabbiani G: Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83: 1689–1707, 2003

    Article  PubMed  Google Scholar 

  19. Liu Y, Templeton DM: The effects of cardiac myocytes on interstitial fibroblasts in toxic iron overload. Cardiovasc Toxicol 1: 299–308, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Olaso E, Friedman SL: Molecular regulation of hepatic fibrogenesis. J Hepatol 29: 836–847, 1998

    Article  PubMed  CAS  Google Scholar 

  21. Wells RG: Fibrogenesis V. TGF-beta signaling pathways. Am J Physiol 279: G845–G850, 2000

    CAS  Google Scholar 

  22. Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275: 2247–2250, 2000

    Article  PubMed  CAS  Google Scholar 

  23. Parkes JG, Liu Y, Sirna JB, Templeton DM: Changes in gene expression with iron loading and chelation in cardiac myocytes and non-myocytic fibroblasts. J Mol Cell Cardiol 32: 233–246, 2000

    Article  PubMed  CAS  Google Scholar 

  24. Zeng H, Liu Y, Templeton DM: Ca2+/calmodulin-dependent and cAMP-dependent kinases in induction of c-fos in human mesangial cells. Am J Physiol 283: F888–F894, 2002

    Google Scholar 

  25. Pietrangelo A, Gualdi R, Casalgrandi G, Montosi G, Ventura E: Molecular and cellular aspects of iron-induced hepatic cirrhosis in rodents. J Clin Invest 95: 1824–1831, 1995

    Article  PubMed  CAS  Google Scholar 

  26. Ramm GA, Crawford DHG, Powell LW, Walker NI, Fletcher LM, Halliday JW: Hepatic stellate cell activation in genetic hemochromatosis. Lobar distribution, effect of increasing hepatic iron and response to phlebotomy. J Hepatol 26: 584–592, 1997

    Article  PubMed  CAS  Google Scholar 

  27. Parkes JG, Templeton DM: Modulation of stellate cell proliferation and gene expression by rat hepatocytes: effect of toxic iron overload. Toxicol Lett 144: 225–233, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Castellot JJ Jr, Pukac LA, Caleb BL, Wright TC Jr, Karnovsky MJ: Heparin selectively inhibits a protein kinase C-dependent mechanism of cell cycle progression in calf aortic smooth muscle cells. J Cell Biol 109: 3147–3155, 1989

    Article  PubMed  Google Scholar 

  29. Miralem T, Wang A, Whiteside CI, Templeton DM: Heparin inhibits mitogen-activated protein kinase-dependent and -independent c-fos induction in mesangial cells. J Biol Chem 271: 17100–17106, 1996

    Article  PubMed  CAS  Google Scholar 

  30. Pukac LA, Castellot JJ Jr, Wright TC, Caleb BL, Karnovsky MJ: Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. Cell Regul 1: 435–443, 1990

    PubMed  CAS  Google Scholar 

  31. Zhao Y, Xiao W, Templeton DM: Suppression of mitogen-activated protein kinase phosphatase-1 (MKP-1) by heparin in vascular smooth muscle cells. Biochem Pharmacol 66: 769–776, 2003

    Article  PubMed  CAS  Google Scholar 

  32. Pardee AB: G1 events and regulation of cell proliferation. Science 246: 603–608, 1989

    Article  PubMed  CAS  Google Scholar 

  33. Shaulian E, Karin M: AP-1 in cell proliferation and survival. Oncogene 20: 2390–2400, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Brilla CG, Weber KT: Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 120: 893–901, 1992

    PubMed  CAS  Google Scholar 

  35. Young M, Head G, Funder JW: Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J Physiol 269: E657–E662, 1995

    PubMed  CAS  Google Scholar 

  36. McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ: Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular fibrosis in vivo. Circulation 98: 2765–2773, 1998

    PubMed  CAS  Google Scholar 

  37. Funck RC, Wilke A, Rupp H, Brilla CG: Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Adv Exp Biol Med 432: 35–44, 1997

    CAS  Google Scholar 

  38. Agocha A, Hyeon-Wu L, Mahboubeh E-W: Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of TGF-β, thyroid hormone, angiotensin II and basic FGF. J Mol Cell Cardiol 29: 2233–2244, 1997

    Article  PubMed  CAS  Google Scholar 

  39. Neumann S, Huse K, Semrau R, Diegeler A, Gebhardt R, Buniatian GH, Scholz GH: Aldosterone and d-glucose stimulate the proliferation of human cardiac myofibroblasts in vitro. Hypertension 39: 756–760, 2002

    Article  PubMed  CAS  Google Scholar 

  40. Gressner AM: Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int 49: S39–S45, 1996

    Google Scholar 

  41. Johnson RJ: The glomerular response to injury: progression or resolution? Kidney Int 45: 1769–1782, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Narine K, DeWever O, Catheenis K, Mareel M, Van Belleghem Y, Van Nooten G: Transforming growth factor-beta-induced transition of fibroblasts: A model for myofibroblast procurement in tissue valve engineering. J Heart Valve Dis 13: 281–289, 2004

    PubMed  Google Scholar 

  43. Swaney JS, Roth DM, Olson ER, Nagle JE, Meszaros JG, Insel PA: Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci USA 102: 437–442, 2005

    Article  PubMed  CAS  Google Scholar 

  44. Kapoun AM, Liang F, O'Young GDLD, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA: B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94: 453–461, 2004

    Article  PubMed  CAS  Google Scholar 

  45. Porter KE, Turner NA, O'Regan DJ, Ball SG: Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9secretion: inhibition by simvastatin. Cardiovasc Res 54: 507–515, 2004

    Article  Google Scholar 

  46. Border WA, Noble NA: Mechanisms of disease: Transforming growth factor β in tissue fibrosis. N Engl J Med 331: 1286–1292, 1994

    Article  PubMed  CAS  Google Scholar 

  47. Haralson MA: Transforming growth factor-β, other growth factors, and the extracellular matrix. J Lab Clin Med 130: 455–458, 1997

    Article  PubMed  CAS  Google Scholar 

  48. Kirschenlohr HL, Metcalfe JC, Weissberg PL, Grainger DJ: Proliferation of human aortic vascular smooth muscle cells in culture is modulated by active TGFβ. Cardiovasc Res 29: 848–855, 1995

    Article  PubMed  CAS  Google Scholar 

  49. Owens GK, Geisterfer AA, Yang YW, Kamoriya A: Transforming growth factor β-induced inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 107: 771–780, 1988

    Article  PubMed  CAS  Google Scholar 

  50. Kim K, Nose K, Shibanuma M: Significance of nuclear relocalization of ERK1/2 in reactivation of c-fos transcription and DNA synthesis in senescent fibroblasts. J Biol Chem 275: 20685–20692, 2000

    Article  Google Scholar 

  51. Nofer JR, Junker R, Pulawski E, Fobker M, Levkau B, von Eckardstein A, Seedorf U, Assmann G, Walter M: High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway. Thromb Haemost 85: 730–735, 2001

    PubMed  CAS  Google Scholar 

  52. Liu ZP, Olson EN: Suppression of proliferation and cardiomyocyte hypertrophy by CHAMP, a cardiac-specific RNA helicase. Proc Natl Acad Sci USA 99: 2043–2048, 2002

    Article  PubMed  CAS  Google Scholar 

  53. Sadoshima J, Aoki H, Izumo S: Angiotensin II and serum differentially regulate expression of cyclins, activity of cyclin-dependent kinases, and phosphorylation of retinoblastoma gene product in neonatal cardiac myocytes. Circ Res 80: 228–241, 1997

    PubMed  CAS  Google Scholar 

  54. Koudssi F, López JE, Villegas S, Long CS: Cardiac fibroblasts arrest at the G1/S restriction point in response to interleukin (IL)-1β. J Biol Chem 273: 25796–25803, 1998

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Templeton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Templeton, D.M. Iron-loaded cardiac myocytes stimulate cardiac myofibroblast DNA synthesis. Mol Cell Biochem 281, 77–85 (2006). https://doi.org/10.1007/s11010-006-0388-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-0388-9

Keywords

Navigation