Skip to main content

Advertisement

Log in

Evaluating the Effect of Sulphated Polysaccharides on Cyclosporine A Induced Oxidative Renal Injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclosporine A (CsA) has been universally used as an immunosuppressant for the management of organ transplantation and various autoimmune diseases. However, nephrotoxicity due to CsA remains to be an important clinical challenge. In the present investigation, an attempt has been made to appraise the effect of sulphated polysaccharides on oxidative renal injury caused by CsA. Adult male Wistar rats were divided into four groups. Two groups received CsA by oral gavage (25 mg/kg body weight) for 21 days to provoke nephrotoxicity, one of which simultaneously received sulphated polysaccharides subcutaneously, (5 mg/kg body weight). A vehicle (olive oil) treated control group and sulphated polysaccharides drug control were also built-in. An increase in lipid peroxidation along with abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) are the salient features observed in CsA induced nephrotoxicity. CsA induced impairment of renal toxicity was evident from the marked decline in the activities of renal marker enzymes like alkaline phosphatase, acid phosphatase and lactate dehydrogenase, as well as an apparent increase in the serum urea, uric acid and creatinine; diagnostic of renal damage was normalized by sulphated polysaccharides co-administration. Sulphated polysaccharides treatment showed an effectual role in counteracting the free radical toxicity by bringing about a significant decrease in peroxidative levels and increase in antioxidant status. These observations emphasize the antioxidant property of sulphated polysaccharides and its cytoprotective action against CsA induced nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahan BD: Cyclosporine. N Engl J Med 321: 1725–1738, 1989

    Article  PubMed  CAS  Google Scholar 

  2. Morris PJ: Cyclosporin. In: Kidney transplantation Morris PJ. (ed.), 1994, pp 179–201

  3. Mason J: The pathophysiology of Sandimmune (cyclosporine) in man and animals. Pediatr Nephrol 4: 554–574, 1990

    Article  PubMed  CAS  Google Scholar 

  4. Humes HD, Jackson NM, O'Connor RP, Hunt DA, White MD: Pathogenetic mechanisms of nephrotoxicity: insights into cyclosporine nephrotoxicity. Transplant Proc 17: 51–62, 1985

    PubMed  CAS  Google Scholar 

  5. Walker RJ, Lazzaro VA, Duggin GG, Horvath JS, Tiller DJ: Synergistic toxicity of cyclosporin A and streptomycin in renal epithelial cell cultures. Res Commun Chem Pathol Pharmacol 62: 447–460, 1988

    PubMed  CAS  Google Scholar 

  6. Baud L, Ardaillou R: Involvement of reactive oxygen species in kidney damage. Br Med Bull 49: 621–629, 1993

    PubMed  CAS  Google Scholar 

  7. Serino F, Grevel J, Napoli KL, Kahan BD, Strobel HW: Oxygen radical formation by the cytochrome P450 system as a cellular mechanism for cyclosporine toxicity. Transplant Proc 26: 2916–2917, 1994

    PubMed  CAS  Google Scholar 

  8. Suleymanlar G, Suleymanlar I, Shapiro JI, Chan L: Possible role of lipid peroxidation in cyclosporine nephrotoxicity in rats. Transplant Proc 26: 2888–2889, 1994

    PubMed  CAS  Google Scholar 

  9. Teas J: The consumption of seaweed as a protective factor in the etiology of breast cancer. Med Hypotheses 7: 601–613, 1981

    Article  PubMed  CAS  Google Scholar 

  10. Lahaye M, Kaffer B: Seaweed dietary fibers structure physiochemical and biological properties relevant to intestinal physiology. Sci Aliments 17: 563–564, 1997

    CAS  Google Scholar 

  11. Matsukawa R, Dubinsky Z, Kishimoto E, Masakki K, Masuda Y, Takeuchi T: A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9: 29–35, 1997

    Article  CAS  Google Scholar 

  12. Ramarathnam N, Osawa T, Ochi H, Kawakishi S: The contribution of plant food antioxidants to human health. Trends Food Sci Technol 6:75–82, 1995

    Article  CAS  Google Scholar 

  13. Marco AM, Guimaraes, Paulo AS, Mourao: Urinary excretion of sulfated polysaccharides administered to wistar rats suggests a renal permselectivity to these polymers based on molecular size. Biochim Biophys Acta 1335: 161–172, 1997

    Google Scholar 

  14. Jimenez-Escrig A, Jimenez-Jimenez I, Pulido R, Saura-Calixto F: Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81: 530–534, 2001

    Article  CAS  Google Scholar 

  15. Matsukawa R: A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9: 29–35, 1997

    Article  CAS  Google Scholar 

  16. Yan X, Nagata T, Fan X: Antioxidative activities in some common seaweeds. Plant Foods Hum Nutr 52: 253–262, 1998

    Article  PubMed  CAS  Google Scholar 

  17. Vieira RP, Mulloy B, Mourao PA: Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucoronosyl residues. J Biol Chem 266: 13530–13536, 1991

    PubMed  CAS  Google Scholar 

  18. King J: The hydrolases-acid and alkaline phosphatases, in: Van (Ed.), Practical Clinical Enzymology, Nostrand company Limited, London, 1965, pp. 191–208

    Google Scholar 

  19. King J: The dehydrogenases or oxidoreductases-lactate dehydrogenase, in: D. Van (Ed.), Practical Clinical Enzymology, Nostrand Company Limited, London, 1965, pp. 83–93

    Google Scholar 

  20. Natelson S, Scott ML, Beffa C: A rapid method for the estimation of urea in biological fluids by means of the reaction between diacetyl monoxime and urea. Am J Clin Pathol 21: 275–281, 1951

    PubMed  CAS  Google Scholar 

  21. Caraway WT: Uric acid. In: Standard Methods of clinical chemistry, Seligson D. (Ed.), Academic Press, New York: 1963, 239–247

    Google Scholar 

  22. Owen JA, Iggo TB, Scandrett FJ, Stemart IP: Determination of creatinine in plasma or serum and in urine, a critical examination. Biochem J 58: 426–437, 1954

    PubMed  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  24. Hogberg J, Larson RE, Kristoferson A, Orrenius S: NADPH-dependent reductase solubilised from microsomes by peroxidation and its activity. Biochem Biophy Res Common. 56: 836–842, 1974

    Article  CAS  Google Scholar 

  25. Devasagayam TP: Lipid peroxidation in rat uterus. Biochim Biophys Acta 876: 507–514, 1986

    PubMed  CAS  Google Scholar 

  26. Marklund S, Marklund G: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469–474, 1974

    Article  PubMed  CAS  Google Scholar 

  27. Sinha AK: Colorimetric assay of catalase. Anal Biochem 47: 389–394, 1972

    Article  PubMed  CAS  Google Scholar 

  28. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG: Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588–590, 1973

    PubMed  CAS  Google Scholar 

  29. Staal GE, Visser J, Veeger C: Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta 185: 39–48, 1969

    PubMed  CAS  Google Scholar 

  30. Habig WH, Pabst MJ, Jakoby WB: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–7139, 1974

    PubMed  CAS  Google Scholar 

  31. Balansky D, Bernstein RE: The purification and properties of glucose-6-phosphate dehydrogenase from human erythrocytes. Biochim Biophys Acta 67: 313–315, 1963

    Article  Google Scholar 

  32. Moron MS, Depierre JW, Mannervik B: Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582: 67–78, 1979

    PubMed  CAS  Google Scholar 

  33. Omaye ST, Turnbull JD, Sauberlich HE: Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62: 3–11, 1979

    Article  PubMed  CAS  Google Scholar 

  34. Desai ID: Vitamin E analysis methods for animal tissues. Methods Enzymol 105: 138–147, 1984

    PubMed  CAS  Google Scholar 

  35. Campistol JM, Sacks SH: Mechanisms of nephrotoxicity. Transplantation 69: SS5-SS10, 2000

    PubMed  CAS  Google Scholar 

  36. Strzelecki T, Kumar S, Khauli R, Menon M: Impairment by cyclosporine of membrane-mediated functions in kidney mitochondria. Kidney Int 34: 234–240, 1988

    PubMed  CAS  Google Scholar 

  37. Inselmann G, Baumann K: Effect of cyclosporine A on accumulation of tetraethylammonium and p-aminohippurate and or lipid peroxidation in rat renal microsomes and cortical slices. Renal failure 12: 165–169, 1990

    PubMed  CAS  Google Scholar 

  38. Shi SH, Zheng SS, Jia CK, Zhu YF, Xie HY: Inhibitory effect of tea polyphenols on transforming growth factor-beta1 expression in rat with cyclosporine A-induced chronic nephrotoxicity. Acta Pharmacol Sin 25: 98–103, 2004

    PubMed  Google Scholar 

  39. Durak I, Karabacak HI, Buyukkocak S, Cimen MY, Kacmaz M, Omeroglu E, Ozturk HS: Impaired antioxidant defense system in the kidney tissues from rabbits treated with cyclosporine. Protective effects of vitamins E and C. Nephron 78: 207–211, 1998

    CAS  Google Scholar 

  40. Parra T, de Arriba G, Conejo JR, Cantero M, Arribas I, Rodriguez-Puyol D, Rodriguez-Puyol M, Carballo F: Cyclosporine increases local glomerular synthesis of reactive oxygen species in rats: effect of vitamin E on cyclosporine nephrotoxicity. Transplantation 66: 1325–1329, 1998

    Article  PubMed  CAS  Google Scholar 

  41. Guder WG, Ross RD: Enzyme distribution along the nephron. Kidney Int 26: 101–111, 1984

    PubMed  CAS  Google Scholar 

  42. Maruhn D, Paar D, Bomhard E: Diagnostic sensitivity or urinary enzymes in experimental kidney damage in the rat. In: Biologic prospective: comptes rendus da 5 e collogue' International do pont-a-mousson, Galteau, M.M., Siest, G. and Henny, J. (Eds). Masson, Paris, 1983, pp 943–945

    Google Scholar 

  43. Raghavendran HR, Sathivel A, Devagi T: Hepatoprotective nature of seaweed alcoholic extract on acetaminophen induced hepatic oxidative stress. J Health Science 50: 42–46, 2004

    Article  CAS  Google Scholar 

  44. Inselmann G, Hannemann J, Baumann K: Cyclosporine A induced lipid peroxidation and influence on glucose-6-phosphatase in rat hepatic and renal microsomes. Res Commun Chem Pathol Pharmacol 68: 189–203, 1990

    PubMed  CAS  Google Scholar 

  45. Mohamadin AM, El-Beshbishy HA, El-Mahdy MA: Green tea extract attenuates cyclosporine A-induced oxidative stress in rats. Pharmacol Res 51: 51–57, 2005

    PubMed  CAS  Google Scholar 

  46. Tariq M, Morais C, Sobki S, Al sulaiman M, Al khader A: N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrol Dial Transplant 14: 923–929, 1999

    Article  PubMed  CAS  Google Scholar 

  47. Raghavendran HR, Sathivel A, Devagi T: Protective effect of Sargassum polycystum (Brown alga) against acetaminophen-induced lipid peroxidation in rats. Phytother Res 19: 113–115, 2005

    Article  PubMed  Google Scholar 

  48. Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J: Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51: 283–297, 1990

    Article  PubMed  CAS  Google Scholar 

  49. Pang ZJ, Chen Y, Zhou M, Wan J. Effect of polysaccharide krestin on glutathione peroxidase gene expression in mouse peritoneal macrophages. Br J Biomed Sci 57: 130–136, 2000

    PubMed  CAS  Google Scholar 

  50. Pang ZJ, Chen Y, Zhou M. Polysaccharide krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages. Am J Chin Med 28: 331–341, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Bray TM, Taylor CG. Tissue glutathione, nutrition, and oxidative stress. Can J Physiol Phamacol 71: 746–751, 1993

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaninathan Varalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Josephine, A., Veena, C.K., Amudha, G. et al. Evaluating the Effect of Sulphated Polysaccharides on Cyclosporine A Induced Oxidative Renal Injury. Mol Cell Biochem 287, 101–108 (2006). https://doi.org/10.1007/s11010-005-9081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9081-7

Keywords

Navigation