Molecular and Cellular Biochemistry

, Volume 285, Issue 1–2, pp 111–120 | Cite as

Rosmarinic acid failed to suppress hydrogen peroxide-mediated apoptosis but induced apoptosis of Jurkat cells which was suppressed by Bcl-2

  • Evangelos Kolettas
  • Christoforos Thomas
  • Eleni Leneti
  • Ioannis Skoufos
  • Christina Mbatsi
  • Christina Sisoula
  • George Manos
  • Angelos Evangelou


Rosmarinic acid (RosA), frequently found as a secondary metabolite in herbs and medicinal plants, has exhibited antioxidative and anti-inflammatory activities. RosA was shown to inhibit the proliferation and induce apoptosis of Jurkat T cells but the mechanism of action of RosA in apoptosis remains elusive. RosA inhibited the proliferation of Jurkat cells in a dose-dependent manner by suppressing the expression of cyclin D3 and p21Cip1/Waf1 and up-regulating p27Kip1. RosA induced apoptosis of Jurkat cells in a dose-dependent manner and failed to protect them from hydrogen peroxide (H2O2)-mediated apoptosis. Induction of apoptosis by RosA correlated with suppression of Bcl-2 but not of Bak or PUMA. Overexpression of Bcl-2 protected Jurkat cells from both H2O2- and RosA-induced apoptosis by altering the ratio of anti- to pro-apoptotic members of the Bcl-2 family. In conclusion, RosA inhibited Jurkat cell proliferation by altering the expression of cyclins and cyclin-dependent kinase inhibitors and induced apoptosis most likely acting through the mitochondrial pathway and possessed no anti-oxidant properties.


rosmarinic acid hydrogen peroxide proliferation apoptosis Bcl-2 members 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell B: Oxidative stress, nutrition and health. Experimental strategies for optimisation of nutritional antioxidant intake in humans. Free Radic Res 25: 57–74, 1996PubMedGoogle Scholar
  2. 2.
    Conner EM, Grisham MB: Inflammation, free radicals and anti-oxidants. Nutrition 12: 274–277, 1996PubMedCrossRefGoogle Scholar
  3. 3.
    Blaauw R, Labadarios D: The role and functions of dietary anti-oxidants in relation to human health. SADJ 55: 327–328, 2000PubMedGoogle Scholar
  4. 4.
    Palmer HJ, Paulson KE: Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev 55: 453–361, 1997Google Scholar
  5. 5.
    Borek C: Dietary antioxidants and human cancer. Integr Cancer Ther 3: 333–341, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Sereti MR, Abu-Amer KM, Sen P: Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 37: 124–130, 1999Google Scholar
  7. 7.
    Petersen M, Simmonds MSJ: Rosmarinic acid. Phytochem 62: 121–125, 2003CrossRefGoogle Scholar
  8. 8.
    Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D: Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage and summer savory. J Agr F Chem 50: 5294–5299, 2002CrossRefGoogle Scholar
  9. 9.
    Cao H, Cheng WX, Li C, Pan XL, Xie XG, Li TH: DFT study on the antioxidant activity of rosmarinic acid. J Mol Str 719: 177–183, 2005CrossRefGoogle Scholar
  10. 10.
    Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R, Inoue K, Kato Y, Osawa TS, Yoshikawa T: Rosmarinic acid inhibits lung injury induced by diesel exhaust particles. Free Rad Biol Med 34: 1060–1069, 2003PubMedCrossRefGoogle Scholar
  11. 11.
    Youn J, Lee KH, Won J, Huh SJ, Yun HS, Cho WG, Paik DJ: Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. J Rheumatol 30: 1203–1207, 2003PubMedGoogle Scholar
  12. 12.
    Osakabe N, Yasuda A, Natsume M, Yoshikawa T: Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla Frutscens extract in the murine two-stage skin model. Carcinogenesis 25: 549–557, 2004PubMedCrossRefGoogle Scholar
  13. 13.
    Renzulli C, Galvano F, Pierdomenico L, Speroni E, Guerra MC: Effects of rosmarinic acid against aflatoxin B1 and ochratoxin A-induced cell damage in a human hepatoma cell line (Hep G2). J Appl Toxicol 24: 289–296, 2004PubMedCrossRefGoogle Scholar
  14. 14.
    Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL: Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 60: 62–65, 2005PubMedGoogle Scholar
  15. 15.
    Kim D-S, Kim H-R, Woo E-R, Hong S-T, Chae H-J, Chae S-W: Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol 70: 1066–1078, 2005PubMedCrossRefGoogle Scholar
  16. 16.
    Kang MA, Yun SY, Won J: Rosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signalling by inhibiting the PLC-γ1 and Itk activity. Blood 101: 3534–3542, 2003PubMedCrossRefGoogle Scholar
  17. 17.
    Won J, Hur YG, Hur EM, Park SH, Kang MA, Choi Y, Park C, Lee KH, Yun Y: Rosmarinic acid inhibits TCR-induced T-cell activation and proliferation in an Lck-dependent manner. Eur J Immunol 33: 870–879, 2003PubMedCrossRefGoogle Scholar
  18. 18.
    Hur YG, Yun Y, Won J: Rosmarinic acid induces p56lck-dependent apoptosis in Jurkat and peripheral T cells via mitochondrial pathway independent from Fas/Fas ligand interaction. J Immunol 172: 79–87, 2004PubMedGoogle Scholar
  19. 19.
    Hengartner MO: The biochemistry of apoptosis. Nature 407: 770–776, 2000PubMedCrossRefGoogle Scholar
  20. 20.
    Cory S, Adams JM: The Bcl-2 family; regulators of the cellular life-or-death switch. Nature Rev Cancer 2: 647–656, 2002CrossRefGoogle Scholar
  21. 21.
    Cory S, Huang DCS, Adams JM: The Bcl-2 protein family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607, 2003PubMedCrossRefGoogle Scholar
  22. 22.
    Barbouti A, Doulias P-T, Nousis L, Tenopoulou M, Galaris D: DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: Bolus addition versus continuous generation of H2O2. Free Rad Biol Med 33: 691–701, 2002PubMedCrossRefGoogle Scholar
  23. 23.
    Wang G-Q, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim T-H, Fang B, Rabinovitz A, Yin X-M, Rabinowich H: A role for mitochondrial Bak in apoptotic response to anticancer Drugs. J Biol Chem 276: 34307–34317, 2001PubMedCrossRefGoogle Scholar
  24. 24.
    Wang G-Q, Wieckowski E, Goldstein LA, Gastman BR, Rabinovitz A, Gambotto A, Li S, Fang B, Yin X-M, Rabinowich H: Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells. J Exp Med 194: 1325–1337, 2001PubMedCrossRefGoogle Scholar
  25. 25.
    Shaughnessy J, Jr, Gabrea A, Qi Y, Brehts L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel P, Kuehl M: Cyclin D3 at 6p21 is downregulated by recurrent chromosomal translocation to immunoglobulin loci in multiple myeloma. Blood 98: 217–223, 2001PubMedCrossRefGoogle Scholar
  26. 26.
    Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levi SD, Geng Y, von Boehmer H, Sicinski P: Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4: 451–461, 2003PubMedCrossRefGoogle Scholar
  27. 27.
    Boonen GJJC, van Oirschot BA, van Diepen A, Mackus WJM, Verdonck LF, Rijksen G, Medema RH: Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines. J Biol Chem 274: 34676–34682, 1999PubMedCrossRefGoogle Scholar
  28. 28.
    Sherr CJ, Roberts JM: CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512, 1999PubMedGoogle Scholar
  29. 29.
    Sherr CJ: The Pezcoller Lecture: Cancer Cell Cycles Revisited. Cancer Res 60: 3689–3695, 2000Google Scholar
  30. 30.
    Sherr CJ, Roberts JM: Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711, 2004PubMedCrossRefGoogle Scholar
  31. 31.
    Coqueret O: New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13: 65–70, 2002CrossRefGoogle Scholar
  32. 32.
    Cheng M, Olivier P, Diehl J, Fero M, Rousell M, Roberts J, Sherr CJ: The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18: 1571–1583, 1999PubMedCrossRefGoogle Scholar
  33. 33.
    Gorospe M, Wang X, Holbrook NJ: Functional role of p21 during the cellular response to stress. Gene Expr 7: 377–385, 1999PubMedGoogle Scholar
  34. 34.
    Gartel AL, Tyner AL: The role of cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1: 639–649, 2002PubMedGoogle Scholar
  35. 35.
    Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ: Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27kip1. J Clin Invest 103: 597–604, 1999PubMedGoogle Scholar
  36. 36.
    Sgambato A, Cittadini A, Faraglia B, Weinstein IB: Multiple functions of p27Kip1 and its alterations in tumor cells: a review. J Cell Physiol 183: 18–27, 2000PubMedCrossRefGoogle Scholar
  37. 37.
    Stewart ZA, Mays D, Pietenpol JA: Defective G1-S cell cycle checkpoint function sensitises cells to microtubule inhibitor-induced apoptosis. Cancer Res 59: 3831–3837, 1999PubMedGoogle Scholar
  38. 38.
    Waldman T, Lengauer C, Kinzler K, Vogelstein B: Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716, 1996PubMedCrossRefGoogle Scholar
  39. 39.
    Stewart ZA, Leach SD, Pietenpol JA: p21Waf1/Cip1 inhibition of cyclin E/Cdk2 activity prevents enderoduplication after mitotic spindle disruption. Mol Cell Biol 19: 206–215, 1999Google Scholar
  40. 40.
    Tripathi P, Hildeman DA: Sensitisation of T cells to apoptosis – a role for ROS? Apoptosis 9: 515–523, 2004PubMedCrossRefGoogle Scholar
  41. 41.
    Hildeman DA: Regulation of T-cell apoptosis by reactive oxygen species. Free Radic Biol Med 36: 1496–1504, 2004PubMedCrossRefGoogle Scholar
  42. 42.
    Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ: Bcl-2 deficient mice demonstrate fulminant lymphoid apoptosis, polycyctic kidneys, and hypopigmented hair. Cell 75: 229–240, 1993PubMedCrossRefGoogle Scholar
  43. 43.
    Nakayama K-I, Nakayama K, Izumi N, Kulda K, Shinkai Y, Louie MC, Fields LE, Lucas PJ, Stewart V, Alt FW, Loh DY: Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261: 1584–1588, 1993PubMedGoogle Scholar
  44. 44.
    Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P: Activated T cell death in vivo mediated by pro-apoptotic Bcl-2 family member Bim. Immunity 16: 759–767, 2002PubMedCrossRefGoogle Scholar
  45. 45.
    Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J, Marrack PC: Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10: 735–744, 1999PubMedCrossRefGoogle Scholar
  46. 46.
    Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P: Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci USA 100: 15035–15040, 2003Google Scholar
  47. 47.
    Campbell JD, Cole M, Bunditrutavorn B, Vella AT: Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. Cell Immunol 194: 1–5, 1999PubMedCrossRefGoogle Scholar
  48. 48.
    Genestier L, Paillot R, Fournel S, Ferraro C, Miosec P, Revillard JP: Immunosuppressive properties of methotrexate: apoptosis of activated peripheral T cells. J Clin Invest 102: 322–328, 1998PubMedCrossRefGoogle Scholar
  49. 49.
    Cohn RG, Mirkovich A, Dunlap B, Burton P, Chiu SH, Eugui E, Caulfield JP: Mycophenolic acid increases apoptosis, lysosomes and lipid droplets in human lymphoid and monocytic cell lines. Transplantation 68: 411–418, 1999PubMedCrossRefGoogle Scholar
  50. 50.
    Hashimoto Y, Matsuoka N, Kawakami A, Tsuboi M, Nakashima T, Eguchi K, Tomioka T, Kanematsu T: Novel immunosuppressive effect of FK506 by augmentation of T cell apoptosis. Clin Exp Immunol 125: 19–24, 2001PubMedCrossRefGoogle Scholar
  51. 51.
    Shim JH, Lee HK, Chang EJ, Chae WJ, Han JH, Han DJ, Morio T, Yang JJ, Bothwell A, Lee SK: Immunosuppressive effects of tautomycetin in vivo and in vitrovia T cell-specific apoptosis induction. Proc Natl Acad Sci USA 99: 10617–10622, 2002PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Evangelos Kolettas
    • 1
  • Christoforos Thomas
    • 1
  • Eleni Leneti
    • 1
  • Ioannis Skoufos
    • 1
  • Christina Mbatsi
    • 1
  • Christina Sisoula
    • 1
  • George Manos
    • 1
  • Angelos Evangelou
    • 1
  1. 1.Cell and Molecular Physiology Unit, Laboratory of Physiology, School of MedicineUniversity of IoanninaIoanninaGreece

Personalised recommendations