Skip to main content

Advertisement

Log in

Third promoter and differential regulation of mouse and human fatty acid translocase/CD36 genes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fatty acid translocase (FAT)/CD36 is a multi-functional membrane protein participating in uptake of long-chain fatty acids and oxidized low density lipoprotein, playing an important role in lipid homeostasis. We reported the dual promoter structures of the mouse and human FAT/CD36 genes in relation to the tissue-specific expression and regulation by peroxisome proliferator-activated receptors (PPARs) (Sato et.al. J. Biol. Chem. 277, 15703–15711, 2002). However, these structures alone could not explain a large induction of the mRNA by a PPAR ligand in the mouse intestine. To learn more about the tissue-specific transcriptional regulation of the FAT/CD36 gene for lipid homeostasis at the whole body level, we cloned the cDNA for the induced mRNA in the mouse intestine and identified third promoter close to the first common exon of the gene. The human gene also has essentially the same gene organization. RT-PCR and Northern blot analyses showed that the three promoters are differentially used in various mouse tissues and the cultured human cells. The physiological significance of these complex promoter structures was suggested by the differential responsiveness to a peroxisome proliferator-activated receptor ligand and the differences in translational efficiencies or stabilities of the mRNA among the isoforms. (Mol Cell Biochem xxx: 1–7, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAT:

brown adipose tissue

FAT:

fatty acid translocase

LPL:

lipoprotein lipase

LXR:

liver X receptor

PPAR:

peroxisome proliferator-activated receptor

RACE:

rapid amplification of cDNA ends

References

  1. Silverstein RL, Febbraio M: CD36 and atherosclerosis. Curr Opin Lipidol 11: 483–491, 2000

    Article  PubMed  CAS  Google Scholar 

  2. Asch AS, Barnwell J, Silverstein RL, Nachman RL: Isolation of the thrombospondin membrane receptor. J Clin Invest 79: 1054–1061, 1987

    PubMed  CAS  Google Scholar 

  3. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268: 17665–17668, 1993

    PubMed  CAS  Google Scholar 

  4. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA: CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268: 11811–11816, 1993

    PubMed  CAS  Google Scholar 

  5. Nicholson, AC, Frieda S, Pearce A, Silverstein RL: Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler Thromb Vasc Biol 15: 269–275, 1995

    PubMed  CAS  Google Scholar 

  6. Rigotti A, Acton SL, Krieger M: The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 270: 16221–16224, 1995

    Article  PubMed  CAS  Google Scholar 

  7. Savill J, Hogg N, Ren Y, Haslett C: Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90: 1513–1522, 1992

    Article  PubMed  CAS  Google Scholar 

  8. Ren Y, Silverstein RL, Allen J, Savill J: CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181: 1857–1862, 1995

    Article  PubMed  CAS  Google Scholar 

  9. Oquendo P, Hundt E, Lawler J, Seed B: CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell 58: 95–101, 1989

    Article  PubMed  CAS  Google Scholar 

  10. Moore K J, El Khoury J, Medeiros LA, Terada K, Geula C, Luster AD, Freeman MW: A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J Biol Chem 277: 47373–47379, 2002

    Article  PubMed  CAS  Google Scholar 

  11. Febbraio M, Hajjar DP, Silverstein RL: CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108: 785–791, 2001

    Article  PubMed  CAS  Google Scholar 

  12. Nicholson AC: Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Trends Cardiovasc Med 14: 8–12, 2004

    Article  PubMed  CAS  Google Scholar 

  13. Sato O, Kuriki C, Fukui Y, Motojima K: Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor α and γ ligands. J Biol Chem 277: 15703–15711, 2002

    Article  PubMed  CAS  Google Scholar 

  14. Kuriki C, Tanaka T, Fukui Y, Sato O, Motojima K: Structural and functional analysis of a new upstream promoter of the human FAT/CD36 gene. Biol Pharm Bull 25: 1476–1478, 2002

    Article  PubMed  CAS  Google Scholar 

  15. Nagy L, Tontonoz P, Alvarez JG, Chen, H, Evans RM: Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93: 229–240, 1998

    Article  PubMed  CAS  Google Scholar 

  16. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM: PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93: 241–252, 1998

    Article  PubMed  CAS  Google Scholar 

  17. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987

    Article  PubMed  CAS  Google Scholar 

  18. . Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N: Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner. J Biol Chem 273: 16710–16714, 1998

    Article  PubMed  CAS  Google Scholar 

  19. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15: 5336–5348, 1996

    PubMed  CAS  Google Scholar 

  20. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss L K, Evans RM, Tontonoz P: A PPAR γ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7: 161–171, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Griffin E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, Asch AS: A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med 7: 840–846, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoto Motojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, O., Takanashi, N. & Motojima, K. Third promoter and differential regulation of mouse and human fatty acid translocase/CD36 genes. Mol Cell Biochem 299, 37–43 (2007). https://doi.org/10.1007/s11010-005-9035-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9035-0

Key words

Navigation