Molecular and Cellular Biochemistry

, Volume 284, Issue 1–2, pp 135–140 | Cite as

Translocation of long chain fatty acids across the plasma membrane – lipid rafts and fatty acid transport proteins

  • Robert Ehehalt
  • Joachim Füllekrug
  • Jürgen Pohl
  • Axel Ring
  • Thomas Herrmann
  • Wolfgang Stremmel


Translocation of long chain fatty acids across the plasma membrane is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but transport can also be accelerated by certain membrane proteins as well as lipid rafts. Lipid rafts are dynamic assemblies of proteins and lipids, that float freely within the two dimensional matrix of the membrane bilayer. They are receiving increasing attention as devices that regulate membrane function in vivo and play an important role in membrane trafficking and signal transduction. In this review we will discuss how lipid rafts might be involved in the uptake process and how the candidate proteins for fatty acid uptake FAT/CD36 and the FATP proteins interact with these domains. We will also discuss the functional role of FATPs in general. To our understanding FATPs are indirectly involved in the translocation process across the plasma membrane by providing long chain fatty acid synthetase activity.


lipid rafts cholesterol caveolae FAT/CD36 FATP long chain fatty acid uptake 



long chain fatty acids


fatty acid transport protein


detergent resistant membrane


dominant negative caveolin-1 mutant


sulfo-N-succinimidyl oleate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simopoulos AP: Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21: 495–505, 2002PubMedGoogle Scholar
  2. 2.
    Yamashita A, Sugiura T, Waku K: Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem (Tokyo) 122: 1–16, 1997Google Scholar
  3. 3.
    Resh MD: Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451: 1–16, 1999PubMedCrossRefGoogle Scholar
  4. 4.
    Pegorier JP, Le May C, Girard J: Control of gene expression by fatty acids. J Nutr 134: 2444S–2449S, 2004PubMedGoogle Scholar
  5. 5.
    Grimaldi PA, Knobel SM, Whitesell RR, Abumrad NA: Induction of aP2 gene expression by nonmetabolized long-chain fatty acids. Proc Natl Acad Sci USA 89: 10930–10934, 1992PubMedCrossRefGoogle Scholar
  6. 6.
    Abumrad NA, Sfeir Z, Connelly MA, Coburn C: Lipid transporters: Membrane transport systems for cholesterol and fatty acids. Curr Opin Clin Nutr Metab Care 3: 255–262, 2000PubMedCrossRefGoogle Scholar
  7. 7.
    Stahl A: A current review of fatty acid transport proteins (SLC27). Pflugers Arch 447: 722–727, 2004PubMedCrossRefGoogle Scholar
  8. 8.
    Stremmel W, Pohl L, Ring A, Herrmann T: A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36: 981–989, 2001PubMedCrossRefGoogle Scholar
  9. 9.
    Hamilton JA, Guo W, Kamp F: Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins? Mol Cell Biochem 239: 17–23, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    Hajri T, Abumrad NA: Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu Rev Nutr 22: 383–415, 2002PubMedCrossRefGoogle Scholar
  11. 11.
    Rietveld A, Simons K: The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376: 467–479, 1998PubMedGoogle Scholar
  12. 12.
    Simons K, Ehehalt R: Cholesterol, lipid rafts, and disease. J Clin Invest 110: 597–603, 2002PubMedCrossRefGoogle Scholar
  13. 13.
    London E, Brown DA: Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508: 182–195, 2000PubMedCrossRefGoogle Scholar
  14. 14.
    Brown DA, London E: Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136, 1998PubMedCrossRefGoogle Scholar
  15. 15.
    Harder T, Scheiffele P, Verkade P, Simons K: Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929–942, 1998PubMedCrossRefGoogle Scholar
  16. 16.
    Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K: Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100: 5795–5800, 2003PubMedCrossRefGoogle Scholar
  17. 17.
    Ehehalt R, Keller P, Haass C, Thiele C, Simons K: Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160: 113–123, 2003PubMedCrossRefGoogle Scholar
  18. 18.
    Pfeiffer A, Bottcher A, Orso E, Kapinsky M, Nagy P, Bodnar A, Spreitzer I, Liebisch G, Drobnik W, Gempel K, Horn M, Holmer S, Hartung T, Multhoff G, Schutz G, Schindler H, Ulmer AJ, Heine H, Stelter F, Schutt C, Rothe G, Szollosi J, Damjanovich S, Schmitz G: Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31: 3153–3164, 2001PubMedCrossRefGoogle Scholar
  19. 19.
    Zeng Y, Tao N, Chung KN, Heuser JE, Lublin DM: Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. J Biol Chem 278: 45931–45936, 2003PubMedCrossRefGoogle Scholar
  20. 20.
    Mairhofer M, Steiner M, Mosgoeller W, Prohaska R, Salzer U: Stomatin is a major lipid-raft component of platelet alpha granules. Blood 100: 897–904, 2002PubMedCrossRefGoogle Scholar
  21. 21.
    Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W: FAT/CD36 Mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol Biol Cell 16: 24–31, 2005PubMedCrossRefGoogle Scholar
  22. 22.
    Pohl J, Ring A, Ehehalt R, Schulze-Bergkamen H, Schad A, Verkade P, Stremmel W: Long-chain fatty acid uptake into adipocytes depends on lipid raft function. Biochemistry 43: 4179–4187, 2004PubMedCrossRefGoogle Scholar
  23. 23.
    Daviet L, Malvoisin E, Wild TF, McGregor JL: Thrombospondin induces dimerization of membrane-bound, but not soluble CD36. Thromb Haemost 78: 897–901, 1997PubMedGoogle Scholar
  24. 24.
    Trigatti BL, Anderson RG, Gerber GE: Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun 255: 34–39, 1999PubMedCrossRefGoogle Scholar
  25. 25.
    Kurzchalia TV, Parton RG: Membrane microdomains and caveolae. Curr Opin Cell Biol 11: 424–431, 1999PubMedCrossRefGoogle Scholar
  26. 26.
    Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP: Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277: 8635–8647, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG: Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1: 98–105, 1999PubMedCrossRefGoogle Scholar
  28. 28.
    Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG: A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152: 1057–1070, 2001PubMedCrossRefGoogle Scholar
  29. 29.
    Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG: Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 15: 99–110, 2004PubMedCrossRefGoogle Scholar
  30. 30.
    Ibrahimi A, Abumrad NA: Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 5: 139–145, 2002PubMedCrossRefGoogle Scholar
  31. 31.
    Abumrad N, Coburn C, Ibrahimi A: Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta 1441: 4–13, 1999PubMedGoogle Scholar
  32. 32.
    Schaffer JE, Lodish HF: Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994PubMedCrossRefGoogle Scholar
  33. 33.
    Stahl A, Gimeno RE, Tartaglia LA, Lodish HF: Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12: 266–273, 2001PubMedCrossRefGoogle Scholar
  34. 34.
    Hirsch D, Stahl A, Lodish HF: A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95: 8625–8629, 1998PubMedCrossRefGoogle Scholar
  35. 35.
    Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P, Watson N, Patel S, Kotler M, Raimondi A, Tartaglia LA, Lodish HF: Identification of the major intestinal fatty acid transport protein. Mol Cell 4: 299–308, 1999PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis SE, Listenberger LL, Ory DS, Schaffer JE: Membrane topology of the murine fatty acid transport protein 1. J Biol Chem 276: 37042–37050, 2001PubMedCrossRefGoogle Scholar
  37. 37.
    Watkins PA, Pevsner J, Steinberg SJ: Human very long-chain acyl-CoA synthetase and two human homologs: Initial characterization and relationship to fatty acid transport protein. Prostaglandins Leukot Essent Fatty Acids 60: 323–328, 1999PubMedCrossRefGoogle Scholar
  38. 38.
    Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, Watkins PA: Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 279: 54454–54462, 2004PubMedCrossRefGoogle Scholar
  39. 39.
    Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA: The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem 274: 36300–36304, 1999PubMedCrossRefGoogle Scholar
  40. 40.
    Black PN, Dirusso CC: Transmembrane movement of exogeneous long-chain fatty acids: proteins, encymes, and vectorial esterification. Microbiol Mol Biol Rev 67: 454–472, 2003PubMedCrossRefGoogle Scholar
  41. 41.
    Gargiulo CE, Stuhlsatz-Krouper SM, Schaffer JE: Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. J Lipid Res 40: 881–892, 1999PubMedGoogle Scholar
  42. 42.
    Hall AM, Smith AJ, Bernlohr DA: Characterization of the Acyl-CoA synthetase activity of purified murine fatty acid transport protein 1. J Biol Chem 278: 43008–43013, 2003PubMedCrossRefGoogle Scholar
  43. 43.
    Stuhlsatz-Krouper SM, Bennett NE, Schaffer JE: Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J Biol Chem 273: 28642–28650, 1998PubMedCrossRefGoogle Scholar
  44. 44.
    Steinberg SJ, Mihalik SJ, Kim DG, Cuebas DA, Watkins PA: The human liver-specific homolog of very long-chain acyl-CoA synthetase is cholate:CoA ligase. J Biol Chem 275: 15605–15608, 2000PubMedCrossRefGoogle Scholar
  45. 45.
    Herrmann T, Buchkremer F, Gosch I, Hall AM, Bernlohr DA, Stremmel W: Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270: 31–40, 2001PubMedCrossRefGoogle Scholar
  46. 46.
    Gimeno RE, Hirsch DJ, Punreddy S, Sun Y, Ortegon AM, Wu H, Daniels T, Stricker-Krongrad A, Lodish HF, Stahl A: Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J Biol Chem 278: 49512–49516, 2003PubMedCrossRefGoogle Scholar
  47. 47.
    Herrmann T, van der Hoeven F, Grone HJ, Stewart AF, Langbein L, Kaiser I, Liebisch G, Gosch I, Buchkremer F, Drobnik W, Schmitz G, Stremmel W: Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J Cell Biol 161: 1105–1115, 2003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Robert Ehehalt
    • 1
    • 2
  • Joachim Füllekrug
    • 1
  • Jürgen Pohl
    • 1
  • Axel Ring
    • 1
  • Thomas Herrmann
    • 1
  • Wolfgang Stremmel
    • 1
  1. 1.Department of Internal Medicine IV (Gastroenterology)University of HeidelbergHeidelbergGermany
  2. 2.Department of Gastroenterology, Hepatology and Infectious DiseasesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations