Molecular and Cellular Biochemistry

, Volume 287, Issue 1–2, pp 43–52 | Cite as

Endocytosis and degradation of serglycin in liver sinusoidal endothelial cells

  • Berit Falkowska-Hansen
  • Inger øynebråten
  • Lars Uhlin-Hansen
  • Bård Smedsrød


We have previously reported that liver sinusoidal endothelial cells (LSECs) are responsible for the clearance of monocyte chondroitin sulfate proteoglycan serglycin from the circulation (øynebråten et al.(2000) J. Leukocyte Biol. 67; 183–188). The aim of the present study was to investigate the kinetics of degradation of endocytosed serglycin in primary cultures of LSECs. The final degradation products of serglycin labelled biosynthetically in the glycosaminoglycan (GAG) chains with [3H] in the acetyl groups of N-acetyl galactosamine residues, [14C] in the pyranose rings, or [35S] in the sulfate groups were identified as[3H]-acetate, [14C]-lactate and [35S]-sulfate. Comparison of the rate of release of degradation products from the cells after endocytosis of serglycin labelled chemically with 125I in the tyrosine residues, or biosynthetically with [35S] or [3H] in the sulfate or acetyl groups, respectively, showed that 125I appeared more rapidly in the medium than [35S]-sulfate and [3H]-acetate. Judging from the speed of appearance of free 125I both intracellularly and in the medium, the core protein is degraded considerably more rapidly than the GAG chains.Desulfation of the GAG chains starts after the GAG chains are released from the core protein. Generation of lactate and acetate as the final products from degradation of the carbon skeleton of the GAG chains indicates that catabolism of endocytosed macromolecules in LSECs proceeds anaerobically.


chondroitin sulfate proteoglycan liver sinusoidal endothelial cells serglycin degradation 



bovine serum albumin


chondroitin sulfate






human serum albumin


liver sinusoidal endothelial cells


phosphate buffered saline


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seternes T, Sørensen K, Smedsrød, B: Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules. Proc Natl Acad Sci 99: 7594–7597, 2002PubMedCrossRefGoogle Scholar
  2. 2.
    Smedsrød B, Pertoft H, Gustafson S, Laurent TC: Scavenger functions of the liver endothelial cell. Biochem J 266: 313–327, 1990PubMedGoogle Scholar
  3. 3.
    Aschoff L: Das reticulo-endotheliale System. Ergebnisse d. inn. Med. 26: 1–118, 1924Google Scholar
  4. 4.
    Smedsrød B, Pertoft H, Eriksson S, Fraser J, Laurent T: Studies in vitro on the uptake and degradation of sodium hyaluronate in rat liver endothelial cells. Biochem J 223: 617–626, 1984PubMedGoogle Scholar
  5. 5.
    Smedsrød B, Kjellen L, Pertoft H: Endocytosis and degradation of chondroitin sulphate by liver endothelial cells. Biochem J 229: 63–71, 1985PubMedGoogle Scholar
  6. 6.
    Laurent TC, Fraser RE, Pertoft H, Smedsrød B: Binding of hyaluronate and chondroitin sulphate to liver endothelial cells. Biochem J 234: 653–658, 1986PubMedGoogle Scholar
  7. 7.
    Smedsrød B: Cellular events in the uptake and degradation of hyaluronan. Advanced Drug Delivery Reviews 7: 265–278, 1991CrossRefGoogle Scholar
  8. 8.
    Politz O, Gratchev A, McCourt PA, Schledzewski K, Guillot S, Johansson S, Svineng G, Franke C, Kannicht J, Kzhyshkowska J, Longati P, Velten FW, Goerdt S: Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 362: 155–164, 2002PubMedCrossRefGoogle Scholar
  9. 9.
    McCourt PA, Smedsrød BH, Melkko J, Johansson S: Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology 30: 1276–1286, 1999PubMedCrossRefGoogle Scholar
  10. 10.
    Hansen B, Svistounov D, Olsen R, Nagai R, Horiuchi S, Smedsrød B: Advanced glycation end products impair the scavenger function of rat hepatic sinusoidal endothelial cells. Diabetologia 45: 1379–1388, 2002PubMedCrossRefGoogle Scholar
  11. 11.
    Matsumoto K, Sano H, Nagai R, Suzuki H, Kodama T, Yoshida M, Ueda S, Smedsrød B, Horiuchi S: Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A. Biochem. J. 352: 233–240, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Hansen B, Arteta B, Smedsrød B: The physiological scavenger receptor function of hepatic sinusoidal endothelial and Kupffer cells is independent of scavenger receptor class A type I and II. Mol. Cell. Biochem. 240: 1–8, 2002PubMedCrossRefGoogle Scholar
  13. 13.
    Gjøen T, Juvet L, Berg T: Characterization of rab proteins in rat liver cells. Z Gastroenterol 34 (Suppl 3): 86–88, 1996PubMedGoogle Scholar
  14. 14.
    Juvet LK, Berg T, Gjøen T: The expression of endosomal rab proteins orrelates with endocytic rate in rat liver cells. Hepatology 25: 1204–1212, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Løvdal T, Brech A, Kjeken R, Smedsrød B, Berg T: Receptor-mediated and fluid phase endocytosis in hepatic sinusoidal cells. Cells of the Hepatic Sinusoid 8: 125–131, 2001Google Scholar
  16. 16.
    Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH: EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270: 13503–13511, 1995Google Scholar
  17. 17.
    Stenmark H, Aasland R, Toh BH, D'Arrigo A: Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271: 24048–24054, 1996PubMedCrossRefGoogle Scholar
  18. 18.
    Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62: 317–329, 1990PubMedCrossRefGoogle Scholar
  19. 19.
    Gorvel J-P, Chavrier P, Zerial M, Gruenberg J: Rab5 controls early endosome fusion in vitro. Cell 64: 915–925, 1991PubMedCrossRefGoogle Scholar
  20. 20.
    Hellevik T, Martinez I, Olsen R, Toh B-H, Webster P, Smedsrød B: Transport of residual endocytosed products into terminal lysosomes occurs slowly in rat liver endothelial cells. Hepatology 28: 1378–1389, 1998PubMedCrossRefGoogle Scholar
  21. 21.
    Knook D, Sleyster E: Isolated parenchymal, Kupffer and endothelial rat liver cells characterized by their lysosomal enzyme content. Biochem Biophys Res Commun 96: 250–257, 1980PubMedCrossRefGoogle Scholar
  22. 22.
    Fraser JRE, Alcorn D, Laurent TC, Robinson AD, Ryan GB: Uptake of circulating hyaluronic acid by the rat liver. Cellular localization in situ. Cell Tissue Res. 242: 505–510, 1985PubMedCrossRefGoogle Scholar
  23. 23.
    Øynebråten I, Hansen B, Smedsrød B, Uhlin-Hansen L: Serglycin secreted by leukocytes is efficiently eliminated from the circulation by sinusoidal scavenger endothelial cells in the liver. J Leukoc Biol 67: 183–188, 2000PubMedGoogle Scholar
  24. 24.
    Smedsrød B, Malmgren M, Ericsson J, Laurent TC: Morphological studies on endocytosis of chondroitin sulphate proteoglycan by rat liver endothelial cells Cell Tissue Res. 253: 39–45, 1988PubMedCrossRefGoogle Scholar
  25. 25.
    Roden L, Campbell P, Fraser J, Laurent T, Pertoft H, Thompson, J. In: D. Evered, J. Whelan, A. Wiley (eds.). The biology of hyaluronan. John Wiley and sons, Chichester, 1989Google Scholar
  26. 26.
    Campbell P, Thompson JN, Fraser JRE, Laurent TC, Pertoft H, Roden L: N-acetylglucosamine-6-phosphate deacetylase in hepatocytes, Kupffer cells and sinusoidal endothelial cells from rat liver. Hepatology 11: 199–204, 1990PubMedGoogle Scholar
  27. 27.
    Tsuchiya N, Yamabe M, Yamaguchi, Y, Kobayashi Y, Konno T, Tada N: Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). J Cancer 26: 171–176, 1980Google Scholar
  28. 28.
    Markwell MAK: A new solid state reagent to iodonate proteins. I. Conditions for the efficient labeling of antiserum. Analytical Biochemistry 125: 427–432, 1982PubMedCrossRefGoogle Scholar
  29. 29.
    Pertoft H, Smedsrød B: Separation and characterization of liver cells. In: T.G. Pretlow, T.P. Pretlow (eds.). Cell Separation: Methods and selected applications, vol. 4, Academic Press, New York, pp. 1–24, 1987Google Scholar
  30. 30.
    Laakso T, Smedsrød B: Cellular distribution in rat liver of intravenously administered polyacryl starch and chondroition sulphate microparticles. Int J Pharmaceutics 36: 253–262, 1987CrossRefGoogle Scholar
  31. 31.
    Rickwood D. In: D. Rickwood (ed.). Iodonated density gradient media – A practical approach. Oxford IRL Press, 1983Google Scholar
  32. 32.
    Barrett A, Heath M: In: J. Dingle (ed.). Lysosomes – A laboratory handbook. North-Holland publishing company, Amsterdam, 1972Google Scholar
  33. 33.
    Hellevik T, Bondevik A, Smedsrød B: Intracellular fate of endocytosed collagen in rat liver endothelial cells. Exp Cell Res 223: 39–49, 1996PubMedCrossRefGoogle Scholar
  34. 34.
    Diment S, Stahl P: Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J Biol Chem 260: 15311–15317, 1985PubMedGoogle Scholar
  35. 35.
    Bowser R, Murphy RF: Kinetics of hydrolysis of endocytosed substrates by mammalian cultured cells: early introduction of lysosomal enzymes into the endocytic pathway. J Cell Physiol 143: 110–117, 1990PubMedCrossRefGoogle Scholar
  36. 36.
    Fraser J, Laurent, T: In: D. Evered, J. Whelan, A. Wiley (eds.). The biology of hyaluronan. John Wiley and sons, Chichester, 1989Google Scholar
  37. 37.
    Kresse H, von Figura K, Buddecke E, Fromme HG: Metabolism of sulfated glycosaminoglycans in cultivated bovine arterial cells. I. Characterization of different pools of sulfated glycosaminoglycans. Hoppe Seylers Z Physiol Chem 356: 929–941, 1975PubMedGoogle Scholar
  38. 38.
    Kresse H, Tekolf W, von Figura K, Buddecke E: Metabolism of sulfated glycosaminoglycans in cultivated bovine arterial cells. II. Quantitative studies on the uptake of 35SO4-labeled proteoglycans. Hoppe Seylers Z Physiol Chem 356: 943–952, 1975PubMedGoogle Scholar
  39. 39.
    Truppe W, Kresse H: Uptake of proteoglycans and sulfated glycosaminoglycans by cultured skin fibroblasts. Eur J Biochem 85: 351–356, 1978PubMedCrossRefGoogle Scholar
  40. 40.
    Kresse H, Glössl J: Glycosaminoglycan degradation. Adv Enzym 60: 217–312, 1987Google Scholar
  41. 41.
    Ernst S, Langer R, Cooney CL, Sasisekharan R: Enzymatic degradation of glycosaminoglycans. Crit. Rev Biochem Mol Biol 30: 387–444, 1995PubMedGoogle Scholar
  42. 42.
    Jonas AJ, Speller RJ, Conrad PB, Dubinsky WP: Transport of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine by rat liver lysosomes. J Biol Chem 264: 4953–4956, 1989PubMedGoogle Scholar
  43. 43.
    Mancini GM, de Jonge HR, Galjaard H, Verheijen FW: Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides. J Biol Chem 264: 15247–15254, 1989PubMedGoogle Scholar
  44. 44.
    Jonas AJ, Jobe H: Sulfate transport by rat liver lysosomes. J Biol Chem 265: 17545–17549, 1990PubMedGoogle Scholar
  45. 45.
    Mancini GM, Beerens CE, Aula PP, Verheijen FW: Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides. J Clin Invest 87: 1329–1335, 1991Google Scholar
  46. 46.
    Forster S, Lloyd JB: Solute translocation across the mammalian lysosome membrane. Biochim Biophys Acta 947: 465–491, 1988PubMedGoogle Scholar
  47. 47.
    Brooks DA, Robertson DA, Bindloss C, Litjens T, Anson DS, Peters C, Morris CP, Hopwood JJ: Two site-directed mutations abrogate enzyme activity but have different effects on the conformation and cellular content of the N-acetylgalactosamine 4-sulphatase protein Biochem J 307: 457–463, 1995PubMedGoogle Scholar
  48. 48.
    Jonas AJ, Jobe H: N-acetyl-D-glucosamine countertransport in lysosomal membrane vesicles. Biochem J 268: 41–45, 1990PubMedGoogle Scholar
  49. 49.
    Bean RC, Shepherd WC, Chan H: Permeability of lipid bilayer membranes to organic solutes. J Gen Physiol 52: 495–508, 1968PubMedCrossRefGoogle Scholar
  50. 50.
    Martinez I, Sveinbjørnsson B, Vidal-Vanaclocha F, Asumendi A, Smedsrød B: Differential cytokine-mediated modulation of endocytosis in rat liver endothelial cells. Biochem Biophys Res Commun 212: 235–241, 1995PubMedCrossRefGoogle Scholar
  51. 51.
    Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrød B: Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 179: 405–412, 1994PubMedCrossRefGoogle Scholar
  52. 52.
    Kjeken R, Brech A, Løvdal T, Roos N, Berg T: Involvement of early and late lysosomes in the degradation of mannosylated ligands by rat liver endothelial cells. Exp Cell Res 216: 290–298, 199.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Berit Falkowska-Hansen
    • 1
  • Inger øynebråten
    • 2
  • Lars Uhlin-Hansen
    • 2
  • Bård Smedsrød
    • 1
  1. 1.Department of Experimental PathologyUniversity of TromsøTromsøNorway
  2. 2.Department of Biochemistry, Institute of Medical BiologyUniversity of TromsøTromsøNorway

Personalised recommendations