Molecular and Cellular Biochemistry

, Volume 287, Issue 1–2, pp 33–42 | Cite as

Evolution of renal function and Na+, K+-ATPase expression during ischaemia-reperfusion injury in rat kidney

  • Sara M. Molinas
  • Laura Trumper
  • Esteban Serra
  • M. Mónica Elías


The aim of the present work was to study the effects of an unilateral ischaemic-reperfusion injury on Na+, K+-ATPase activity, α1 and β1 subunits protein and mRNA abundance and ATP content in cortical and medullary tissues from postischaemic and contralateral kidneys. Right renal artery was clamped for 40 min followed by 24 and 48 h of reperfusion. Postischaemic and contralateral renal function was studied cannulating the ureter of each kidney. Postischaemic kidneys after 24 (IR24) and 48 (IR48) hours of reperfusion presented a significant dysfunction. Na+, K+-ATPase α1 subunit abundance increased in IR24 and IR48 cortical tissue and β1 subunit decreased in IR48. In IR24 medullary tissue, α1 abundance increased and returned to control values in IR48 while β1 abundance was decreased in both periods. Forty minutes of ischaemia without reperfusion (I40) promoted an increment in α1 mRNA in cortex and medulla that normalised after 24 h of reperfusion. β1 mRNA was decreased in IR24 medullas. No changes were observed in contralateral kidneys. This work provides evidences that after an ischaemic insult α1 and β1 protein subunit abundance and mRNA levels are independently regulated. After ischaemic-reperfusion injury, cortical and medullary tissue showed a different pattern of response. Although ATP and Na+, K+-ATPase activity returned to control values, postischemic kidney showed an abnormal function after 48 h of reflow.


renel functio ischaemia-reperfusion Na+ K+-ATPase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molitoris BA, Marrs J: The role of cell adhesion molecules in ischemic acute renal failure. Am J Med 106: 583–592, 1999PubMedCrossRefGoogle Scholar
  2. 2.
    Weimberg JM: The cell biology of the ischemic renal injury. Kidney Int 39: 476–490, 1991Google Scholar
  3. 3.
    Venkatachalam MA, Bernard DB, Donohoe J, Levinsky NG: Ischemic damage and repair in the rat proximal tubule. Differences among S1, S2 and S3 segments. Kidney Int 14: 31–49, 1978PubMedGoogle Scholar
  4. 4.
    Brezis M, Rosen S, Silva P, Epstein FH: Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest 73: 182–190, 1984PubMedCrossRefGoogle Scholar
  5. 5.
    Bonventre JV, Brezis M, Siegel N, Rosen S, Portilla D, Venkatachalam M: Acute renal failure I. Relative importance of proximal vs. distal tubular injury. Am J Physiol 275: F623–F632, 1998Google Scholar
  6. 6.
    Hanley MJ: Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol 239: F17–F23, 1980PubMedGoogle Scholar
  7. 7.
    Johnston PA, Rennke H, Levinsky NG: Recovery of proximal tubular function from ischemic injury. Am J Physiol 246: F159–F166, 1984PubMedGoogle Scholar
  8. 8.
    Wang Z, Rabb H, Haq M, Shull GE, Soleimani M: A possible molecular basis of natriuresis during ischemic-reperfusion injury in the kidney. J Am Soc Nephrol 9: 605–613, 1998PubMedGoogle Scholar
  9. 9.
    Kellerman PS, Bogusky RT: Microfilament disruption occurs very early in ischemic proximal tubule cell injury. Kidney Int 42: 896–902, 1992PubMedGoogle Scholar
  10. 10.
    Fish EM, Molitoris BA: Alteration in epithelial polarity and the pathogenesis of disease states. N Eng J Med 330: 1580–1588, 1994CrossRefGoogle Scholar
  11. 11.
    Spiegel DM, Wilson PD, Molitoris BA: Epithelial polarity following ischemia: A requirement for normal cell function. Am J Physiol 256: F430–F436, 1989PubMedGoogle Scholar
  12. 12.
    Van Why SK, Mann AS, Ardito T, Siegel NJ, Kashgarian M: Expression and molecular regulation of Na+, K+-ATPase after renal ischemia. Am J Physiol 267: F75–F85, 1994PubMedGoogle Scholar
  13. 13.
    Kwon TH, Frokier J, Han JS, Knepper M, Nielsen S: Decreased abundance of major Na+ transporters in kidneys of rats with ischemia-induced acute renal failure. Am J Physiol 278: F925–F939, 2000Google Scholar
  14. 14.
    Fekete A, Vannay A, Vér A, Vásárhelyi B, Müller V, Ouyang N, Reusz G, Tulassay T, Szabó A: Sex differences in the alterations of Na+, K+-ATPase following ischaemia-reperfusion injury in the rat kidney. J Physiol 555: 471–480, 2003PubMedCrossRefGoogle Scholar
  15. 15.
    Hasler U, Wang X, Cramber G, Beguin P, Jaisser F, Horisberger JD, Geering K: Role of beta-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na, K-ATPase. J Biol Chem 273: 30826–30835, 1998PubMedCrossRefGoogle Scholar
  16. 16.
    Coux G, Trumper L, Elías MM: Cortical Na+, K+-ATPase activity, abundance and distribution after in vivo renal ischemia without reperfusion in rats. Nephron 89: 82–89, 2001PubMedCrossRefGoogle Scholar
  17. 17.
    Petrini G, Ochoa EJ, Serra E, Torres AM, Elías MM: Fibronectin expression in proximal tubules from ischemic rat kidneys without reperfusion. Mol Cell Biochem 241: 21–27, 2002PubMedCrossRefGoogle Scholar
  18. 18.
    Coux G, Trumper L, Elías MM: Renal function and cortical Na+, K+-ATPase activity, abundance and distribution after ischaemia-reperfusion in rats. Biochim Biophys Acta 1586: 71–80, 2002PubMedGoogle Scholar
  19. 19.
    Valdivieso JM, Crespo C, Alonso JR, Martínez-Salgado C, Eleno N, Arévalo M, Pérez-Barriocanal F, López-Novoa JM: Renal ischemia in the rat stimulates glomerular nitric oxide synthesis. Am J Physiol 280: R771–R779, 2001Google Scholar
  20. 20.
    Boumendil-Povedin EF, Povedin RA: Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction. Biochim Biophys Acta 735: 86–94, 1983CrossRefGoogle Scholar
  21. 21.
    Koshier FJ, Stokols MF, Goldinger JM, Acara M, Hong SK: Effects of DIDS on renal tubular transport. Am J Physiol 238: F99–F106, 1980Google Scholar
  22. 22.
    Summer J: A method for the colorimetric determination of phosphorus. Science 100: 413–414, 1944Google Scholar
  23. 23.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970PubMedCrossRefGoogle Scholar
  24. 24.
    Towbin H, Staehelim T, Gordon J: Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4353, 1979PubMedCrossRefGoogle Scholar
  25. 25.
    Sweadner KJ: Anomalies in the electrophoretic resolution of Na+, K+-ATPase catalytic subunit isoforms reveal unusual protein-detergent interactions. Biochim Biophys Acta 1029: 13–23, 1990PubMedCrossRefGoogle Scholar
  26. 26.
    Trumper L, Coux G, Elías MM: Effect of acetaminophen on Na+, K+-ATPase and alkaline phosphatase on plasma membranes of renal proximal tubules. Toxicol Appl Pharmacol 164: 143–148, 2000PubMedCrossRefGoogle Scholar
  27. 27.
    Tsuchiya K, Giebisch G, Welling P: Aldosterone-dependent regulation of Na+, K+-ATPase subunit mRNA in the rat CCD: competitive PCR analysis. Am J Physiol 271: F7–F15, 1996PubMedGoogle Scholar
  28. 28.
    Roe HH, Epstein JH, Goldstein NP: A photometric method for the determination of inulin in plasma and urine. J Biol Chem 178: 839–843, 1949PubMedGoogle Scholar
  29. 29.
    Waugh WH, Beall PT: Simplified measurement of p-aminohippurate and other arylamines in plasma and urine. Kidney Int 5: 429–436, 1974PubMedGoogle Scholar
  30. 30.
    Sedmak JJ, Grossberg SE: A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G-250. Anal Biochem 79: 544–552, 1971CrossRefGoogle Scholar
  31. 31.
    Lamprecht W, Trautschold I: Adenosine-5′-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed). Methods of Enzymatic Analysis. Academic Press, Orlando, 1974, pp 2101–2109Google Scholar
  32. 32.
    Barrilli A, Molinas S, Petrini G, Menacho M, Elías MM: Losartan reverses fibrotic changes in cortical renal tissue induced by ischemia or ischemia-reperfusion without changes in renal function. Mol Cell Biochem 260: 161–170, 2004PubMedCrossRefGoogle Scholar
  33. 33.
    Brady BR, Brenner BM, Lieberthal W: Acute renal failure. In: Brenner B (ed). The Kidney, Vol 2. W. B. Saunders Co, Philadelphia, PA, 1996, pp 1200–1252Google Scholar
  34. 34.
    Lingrel JB, Orlowski J, Shull MM, Price EM: Molecular genetics of Na+, K+-ATPase. Prog Nucleic Acid Res Mol Biol 38: 37–89, 1990PubMedCrossRefGoogle Scholar
  35. 35.
    McDonough AA, Geering K, Farley RA: The sodium pump needs its β subunit. FASEB J 4: 1598–1605, 1990PubMedGoogle Scholar
  36. 36.
    Mircheff AK, Bowen JW, Yiu SC, McDonough AA: Synthesis and translocation of Na+, K+-ATPase α and β subunits to plasma membrane in MDCK cells. Am J Physiol 262: C470–C483, 1992PubMedGoogle Scholar
  37. 37.
    Verrey F, Schaerer E, Zoerkler P, Paccolat MP, Geering K, Kraehenbuhl JP, Rossier BC: Regulation by aldosterone of Na+, K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J Cell Biol 104: 1231–1237, 1987PubMedCrossRefGoogle Scholar
  38. 38.
    Tang M, Mc Donough AA: Low K+ increases Na+, K+-ATPase α and β subunits mRNA and protein abundance in cultured renal proximal tubule cells. Am J Physiol 263: C436–C442, 1992PubMedGoogle Scholar
  39. 39.
    Hawng SJ, Chang JM, Chen HC, Tsai JH, Lai YH: Changes of renal cortical Na+, K+-ATPase activity, protein, and mRNA expression in ureteral obstruction. Kaohsiung J Med Sci 18: 273–280, 2002Google Scholar
  40. 40.
    Pressley TA: Ion concentration-dependent regulation of Na, K-pump abundance. J Membr Biol 105: 187–195, 1988PubMedCrossRefGoogle Scholar
  41. 41.
    Bertorello AM, Ridge KM, Chibalin AV, Katz AI, Sznajder JI: Isoproterenol increases Na+, K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. Am J Physiol 276: L20–L27, 1999PubMedGoogle Scholar
  42. 42.
    Wendt CH, Towle H, Sharma R, Duvick S, Kawakami K, Gick G, Ingbar DH: Regulation of Na+, K+-ATPase gene expression by hyperoxia in MDCK cells. Am J Physiol 274: C356–C364, 1998.Google Scholar
  43. 43.
    Muto S, Nemoto J, Okada K, Miyata Y, Kawakami K, Saito T, Asano Y: Intracellular Na+ directly modulates Na+, K+-ATPase gene expression in normal rat kidney epithelial cells. Kidney Int 57: 1617–1635, 2000PubMedCrossRefGoogle Scholar
  44. 44.
    Dagenais A, Denis C, Vives MF, Girouard S, Massé C, Nguyen T, Yamagata T, Grygorczyk C, Kothary R, Berthiaume Y: Modulation of α-EnaC and α1- Na+, K+-ATPase by cAMP and dexamethasone in alveolar epithelial cells. Am J Physiol 281:L217–L230, 2001Google Scholar
  45. 45.
    Rayson BM: [Ca2+]i regulates transcription rate of the Na+/K+-ATPase α1 subunit. J Biol Chem 266(32): 21335–21338, 1991Google Scholar
  46. 46.
    Isenovic ER, Jacobs DB, Kedees MH, Sha Q, Milivojevic N, Kawakami K, Gick G, Sowers JR: Angiotensin II regulation of the Na+ pump involves the phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways in vascular smooth muscle cells. Endocrinology 145(3): 1151–1160, 2004Google Scholar
  47. 47.
    Alejandro VS, Nelson J, Huie P, Sibley RK, Dafoe D, Kuo P, Scandling JD, Myers BD: Postischemic injury, delayed function and Na+, K+-ATPase distribution in the transplanted kidney. Kidney Int 48: 1308–1315, 1995PubMedGoogle Scholar
  48. 48.
    Kwon O, Corrigan G, Myers BD, Sibley R, Scandling JD, Dafoe D, Alfrey E, Nelson WJ: Sodium reabsortion and distribution of Na+/K+-ATPase during postischemic injury to the renal allograft. Kidney Int 55: 963–975, 1999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sara M. Molinas
    • 1
    • 2
  • Laura Trumper
    • 1
    • 3
  • Esteban Serra
    • 1
    • 4
  • M. Mónica Elías
    • 1
    • 2
    • 5
  1. 1.Farmacología, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)RosarioArgentina
  2. 2.Instituto de Fisiología Experimental (IFISE – CONICET)RosarioArgentina
  3. 3.Consejo de Investigaciones de la Universidad Nacional de Rosario(CIUNR)RosarioArgentina
  4. 4.Instituto de Biología Molecular de Rosario (IBR – CONICET)RosarioArgentina
  5. 5.Farmacología. Facultad de Ciencias Bioqímicas y Farmacéuticas SuipachaRasarioArgentina

Personalised recommendations