Skip to main content
Log in

Protective effects of sarpogrelate, a 5-HT2A antagonist, against postischemic myocardial dysfunction in guinea-pig hearts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The protective effects of sarpogrelate (SG), a 5-HT2A antagonist, were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. Changes in cellular levels of high phosphorous energy, NO and Ca2+ in the heart together with simultaneous recordings of left ventricular developed pressure (LVDP) were monitored using an nitric oxide (NO) electrode, fluorometry and 31P-NMR. The recovery of LVDP from ischemia by reperfusion was 30.1% in the control, while the treatment with SG (5×10-7 M) in pre- and post-ischemia hearts produced a gradual increase to 73.1 and 53.6%, respectively. At the final stage of ischemia, the intracellular concentration of Ca2+ ([Ca2+i) and release of NO increased with no twitching and remained at a high steady level. The addition of SG increased the transient NO signal (TNO) level at the end of ischemia compared with the control, but [Ca2+]i during ischemia decreased. Meanwhile, mitochondrial Ca2+ uptake on acidification or Ca2+ content changes of the perfusate was suppressed by pre-treatment with SG or the KATP channel opener diazoxide, but not the KATP channel blocker 5-HD. The myocardial NO elevated with 5-HT in normal Langendorff hearts was suppressed by the treatment with SG. Therefore, the existence of the 5HT2A receptor in a Langendorff heart was anticipated. By in vitro EPR, SG was found to directly quench the hydroxy radical. Thus, these findings suggested that the 5-HT2A receptor induced in ischemia–reperfusion plays an important role in the mitochondrial KATP channel of hearts in close relation with NO and active oxygen radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frishman WH, Huberfeld S, Okin S, Wang YH, Kumar A, Shareef B: Serotonin and serotonin antagonism in cardiovascular and non-cardiovascular disease. J Clin Pharmacol 35: 541–572, 1995

    CAS  PubMed  Google Scholar 

  2. Parikh V, Singh M: Resident cardiac mast cells and the cardioprotective effect of ischemic preconditioning in isolated rat heart. J Cardiovasc Pharmacol 30: 149–156, 1997

    Article  CAS  PubMed  Google Scholar 

  3. Vikenes K, Farstad M, Nordrehaug JE: Serotonin is associated with coronary artery disease and cardiac events. Circulation 100: 483–489, 1999

    CAS  PubMed  Google Scholar 

  4. Frishman WH, Grewall P: Serotonin and the heart. Ann Med 32: 195–209, 2000

    CAS  PubMed  Google Scholar 

  5. Saxena PR: Cardiovascular effects from stimulation of 5-hydroxytryptamine receptors. Fund Clin Pharmacol 3: 245–265, 1989

    CAS  Google Scholar 

  6. Nilsson T, Longmore J, Shaw D, Pantev E, Bard JA, Branchek T, Edvinsson L: Characterization of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol 372: 49–56, 1999

    Article  CAS  PubMed  Google Scholar 

  7. Fozard JR, Mwaluko GM: Mechanism of the indirect sympathomimetic effect of 5-hydroxytryptamine on the isolated heart of the rabbit. Br J Pharmacol 57: 115–125, 1976

    CAS  PubMed  Google Scholar 

  8. Sakai K, Akima M: An analysis of the stimulant effects of 5-hydroxytryptamine on isolated, blood-perfused rat heart. Eur J Pharmacol 55: 421–424, 1979

    Article  CAS  PubMed  Google Scholar 

  9. Hamamori Y, Yokoyama M, Yamada M, Akita H, Goshima K, Fukuzaki H: 5-hydroxytriptamine induces phospholipase C-mediated hydrolysis of phosphoinositides through 5-hydroxytryptamine-2 receptors in cultured fetal mouse ventricular myocytes. Circ Res 66: 1474–1483, 1990

    CAS  PubMed  Google Scholar 

  10. Laer S, Remmers F, Scholz H, Stein B, Muller FU, Neumann J: Receptor mechanisms involved in the 5-HT-induced inotropic action in the rat isolated atrium. Br J Pharmacol 123: 1182–1188, 1998

    Article  CAS  PubMed  Google Scholar 

  11. Spigset O, Mjorndal T: Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamine ([3H]-LSD): intra- and interindividual variability. Neuropysychopharmacology 16: 285–293, 1997

    Article  CAS  Google Scholar 

  12. Barnes NM, Sharp T: A review of central 5-HT receptors and their function. Neurophamacology 38: 1083–1152, 1999

    Article  CAS  Google Scholar 

  13. Shigei T, Ishikawa N, Ichikawa T, Tsuru H: Differences in the response of three embryologically distinct segments of the isolated canine posterior vena cava to vasoactive substances. Blood Vessels 15: 157–169, 1978

    CAS  PubMed  Google Scholar 

  14. Cerrito F, Lazzaro MP, Gaudio E, Armino P, Aloisi G: 5-HT2-receptors and serotonin release: their role in human platelet aggregation. Life Sci 53: 209–15, 1993

    Article  CAS  PubMed  Google Scholar 

  15. Hara H, Osakabe M, Kitajima A, Tamao Y, Kikumoto R: MCI-9042, a new antiplatelet agent, is a selective S2-serotonergic receptor antagonist. Thromb Haemost 65: 415–420, 1991

    CAS  PubMed  Google Scholar 

  16. Niwa M, Kunisada K, Himeno A, Kawaguchi A, Ozaki M: 5-hydroxytryptamine content in the rat heart: Quantitation by high-performance liquid chromatographic electrochemical detection. Jpn J Pharmacol 34: 264–267, 1984

    CAS  PubMed  Google Scholar 

  17. Shimizu Y, Minatoguchi S, Hashimoto K, Uno Y, Arai M, Wang N, Chen X, Lu C, Takemura G, Shimomura M, Fujiwara T, Fujiwara H: The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptopamine-2 receptor blocker, in rabbit hearts. J Am Coll Cardio 140: 1347–1355, 2002

    Article  Google Scholar 

  18. Teramoto Y, Urano T, Nagai N, Takada Y, Ikeda K, Takada A: Plasma levels of 5-HT and 5-HIAA increased after intestinal ischemia/reperfusion in rats. Jpn J Physiol 48: 333–339, 1998

    Article  CAS  PubMed  Google Scholar 

  19. Van den Berg EK, Schmitz JM, Benedict CR, Malloy CR, Willerson JT, Dehmer GJ: Transcardiac serotonin concentration is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation 79: 116–124, 1989

    CAS  PubMed  Google Scholar 

  20. Brogden RN, Sorkin EM: Ketanserin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in hypertension and peripheral vascular disease. Drugs 40: 903–949, 1990

    CAS  PubMed  Google Scholar 

  21. Grover GJ, Sargent GA, Dzwonczyk S, Normandin DE, Antonaccio NJ: Protective effect of serotonin (5-HT2) receptor antagonists in ischemic rat hearts. J Cardiovasc Pharmacol 22: 664–672, 1993

    CAS  PubMed  Google Scholar 

  22. Grover GJ, Parham CS, Youssef S, Ogaletree ML: Protective effect of the serotonin receptor antagonist cinanserin in two canine models of pacing-induced myocardial ischemia. Pharmacology 50: 286–297, 1995

    CAS  PubMed  Google Scholar 

  23. Hotta Y, Nagatsu A, Liu W, T Muto, Narumiya C, Lu X, Yajima M, Ishikawa N, Kawai N, Mizukami H, Sakakibara J : Protective effects of serotonin derivatives isolated from safflower against postischemic myocardial dysfunction. Mol cell Biochem 238: 151–162, 2002

    CAS  PubMed  Google Scholar 

  24. Hotta Y, Fujita M, Nakagawa J, Ando H, Takeya K, Sakakibara J: Contribution of cytosolic ionic and energetic milieu change to ischemia- and reperfused-induced injury in guinea-pig heart: Fluorometry and nuclear magnetic resonance studies. J Cardiovasc Pharmacol 31: 146–56, 1998

    CAS  PubMed  Google Scholar 

  25. Hotta Y, Nakagawa J, Wakida Y, Ishikawa N, Ando H, Takeya K, Ohashi N, Matsui K: Protective effect of SM-20550, a selective Na+-H+ exchange inhibitor, on ischemia–reperfusion injured hearts. J Cardiovasc Pharmacol 37: 143–154, 2001

    CAS  PubMed  Google Scholar 

  26. Hotta Y, Ishikawa N, Ohashi N, Matsui K: Effects of SM-20550, a selective Na+-H+ exchange inhibitor, on the ion transport of myocardial mitochondria. Moll Cell Biochem 219: 83–90, 2001

    CAS  Google Scholar 

  27. Hotta Y, Nishimaki H, Takeo T, Itoh G, Yajima M, Otsuka-Murakami H, Ishikawa N, Kawai N, Huang L, Yamada K, Yamamoto S, Matsui K, Ohashi N: Differences in the effects of Na+-H+ exchange inhibitors on cardiac function and apoptosis in guinea-pig ischemia-reperfused hearts. Eur J Pharmacol 503: 109–122, 2004

    CAS  PubMed  Google Scholar 

  28. Ozaki H, Satoh T, Karaki H, Ishida Y: Regulation of metabolism and contraction by cytoplasmic calcium in the intestinal smooth muscle. J Biol Chem 264: 14074–14079, 1988

    Google Scholar 

  29. Ichimori K, Ishida H, Fukabori M, Nakazawa H, Murakami E: Practical nitric oxide measurement employing a nitric oxide-sensitive electrode. Rev Sci Instrum 65: 1–5, 1994

    Google Scholar 

  30. Cao Y, Hotta Y, Shioi K, Nagata Y, Kawai N, Ishikawa N: Protective effects of FK409, a novel NO-donor, against post-ischemic myocardial dysfunction in guinea-pig hearts. J Cardiovasc Pharmacol 38: 593–605, 2001

    CAS  PubMed  Google Scholar 

  31. Higuchi H, Satoh T: Endothelin-1 induces vasoconstriction and nitric oxide release via endothelin ET B receptors in isolated perfused rat liver. Eur J Pharmacol 328: 175–182, 1997

    CAS  PubMed  Google Scholar 

  32. Hotta Y, Otsuka-Murakami H, Fujita M, Nakagawa J, Yajima M, Ishikawa N, Kawai N, Masumizu T, Kohno M: Protective role of nitric oxide synthase in myocardial mitochondria against ischemia–reperfusion injury in guinea pigs. Eur J Pharmacol 380: 37–48, 1999

    CAS  PubMed  Google Scholar 

  33. Temsah RM, Kumamoto H, Takeda N, Dhalla NS: Sarpogrelate diminishes changes in energy stores and ultrastructure of the ischemic-reperfused rat heart. Can J Physiol Phamacol 79: 761–767, 2001

    CAS  Google Scholar 

  34. Brasil D, Temsah RM, Kumar K, Kumamoto H, Takeda N, Dhalla NS: Blockade of 5-HT2A receptors by sarpogrelate protects the heart against myocardial infarction in rats. J Cardiovasc Pharmacol Therapeut 7: 53–59, 2002

    CAS  Google Scholar 

  35. Tani M, Neely JR: Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 65: 1045–1056, 1989

    CAS  PubMed  Google Scholar 

  36. Brooks, WW, Conrad, CH, Morgan, JP: Reperfusion induced arrhythmias following ischemia in intact rat heart: Role of intracellular calcium. Cardiovasc Res 29: 536–542, 1995

    CAS  PubMed  Google Scholar 

  37. Koike A, Abe T, Hotta Y, Takeya K, Kodama I, Toyama J: Protective effects of dimethyl amiloride, a potent Na+-H+ exchange inhibitor, against post-ischemic myocardial dysfunction. 31P-NMR measurements of pHi and cellular energy in isolated perfused rabbit hearts. J Thorac Cardiovasc Surg 112: 765–775, 1996

    CAS  PubMed  Google Scholar 

  38. Ishida H, Higashijima N, Hirota Y, Genka C, Nakazawa H, Nakaya H, Sato T: Nicorandil attenuates the mitochondrial Ca2+ overload with accompanying depolarization of the mitochondrial membrane in the heart. Naunyn Schmiedebergs Arch Pharmacol 369: 192–197, 2004

    CAS  PubMed  Google Scholar 

  39. Vanhoute P, Shimokawa H: Endothelium-derivatived relaxing factor and coronary vasospasm. Circulation 80: 1–9, 1989

    PubMed  Google Scholar 

  40. Chacon E, Acosta D: Mitochondrial regulation of superoxide by Ca2+: An alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol Appl Pharmacol 107: 117–28, 1991

    CAS  PubMed  Google Scholar 

  41. Paraidathathu T, de Groot H, Kehrer JP: Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Radic Biol Med 13: 289–297, 1992

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Hotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muto, T., Hotta, Y., Miyazeki, K. et al. Protective effects of sarpogrelate, a 5-HT2A antagonist, against postischemic myocardial dysfunction in guinea-pig hearts. Mol Cell Biochem 272, 119–132 (2005). https://doi.org/10.1007/s11010-005-6909-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-6909-0

Keywords

Navigation