Molecular and Cellular Biochemistry

, Volume 277, Issue 1–2, pp 33–42 | Cite as

mCICR is required for As2O3-induced permeability transition pore opening and cytochrome c release from mitochondria

  • Xuemei Tian
  • Xiaodong Ma
  • Dongfang Qiao
  • Ande Ma
  • Fang Yan
  • Xingxu Huang


The permeability transition pore (PTP) is central for apoptosis by acting as a good candidate pathway for the release of Cyt. c and apoptosis induction factors (AIF). Arsenite induces apoptosis via a direct effect on PTP. To characterize the exact mechanism for arsenite induces PTP opening, the effect of Ca2+ on As2O3-induced PTP opening, the relationship between As2O3-induced PTP opening and Cyt. c release from mitochondria and calcium-induced calcium release from mitochondria (mCICR), and the effects of As2O3 on Ca2+-induced PTP opening were studied. The results showed As2O3 induces Cyt. c release by triggering PTP opening. Ca2+ is necessary for As2O3-induced PTP opening. As2O3-induced PTP opening and Cyt. c release depends on mCICR. As2O3 promotes PTP opening by lowering Ca2+-threshold. These results indicated As2O3 induce Cyt. c release from mitochondria by lowering Ca2+-threshold for PTP and triggering mCICR-dependent PTP opening. Suggesting that it is possible to control apoptosis by altering Ca2+ threshold and mCICR to modulate PTP opening and Cyt. c release.


As2O3 calcium transport cytochrome c apoptosis permeability transition pore mitochondria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aposhian HV: Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37: 397–419, 1997CrossRefPubMedGoogle Scholar
  2. 2.
    Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339: 1341–1348, 1998CrossRefPubMedGoogle Scholar
  3. 3.
    Evens AM, Tallman MS, Gartenhaus RB: The potential of arsenic trioxide in the treatment of malignant disease: Past, present, and future. Leuk Res 28(9): 891–900, 2004CrossRefPubMedGoogle Scholar
  4. 4.
    Chou WC, Dang CV: Acute promyelocytic leukemia: Recent advances in therapy and molecular basis of response to arsenic therapies. Curr Opin Hematol 12(1): 1–6, 2005CrossRefPubMedGoogle Scholar
  5. 5.
    Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z: In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) induces NB4 cell apoptosis with down-regulation of bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88: 1052–1061, 1996PubMedGoogle Scholar
  6. 6.
    Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, Ruthardt M: PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol 7: 5170–5178, 1999Google Scholar
  7. 7.
    Konig A, Wrasel L, Warrell RP, Rivi R, Pandolfi PP, Jakubowski A, Gabrilove JL: Comparative activity of melarsoprol and arsenic trioxide in chronic B-cell leukemia lines. Blood 90: 562–570, 1997PubMedGoogle Scholar
  8. 8.
    Akao Y, Mizoguchi H, Kojima S, Naoe T, Ohishi N, Yagi K: Arsenic induces apoptosis in B-cell leukaemic cell lines in vitro: activation of caspases and down-regulation of Bcl-2 protein. Br J Haematol 102: 1055–1060, 1998CrossRefPubMedGoogle Scholar
  9. 9.
    AkaoY, NakagawaY, Akiyama K: Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett 455(1–2): 59–62, 1999CrossRefPubMedGoogle Scholar
  10. 10.
    Woo SH, Park IC, Park MJ, Lee SJ, Chun YJ, Lee SH, Hong SI, Rhee CH: Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in Hela cells. Int J Oncol 21(1): 57–63, 2002PubMedGoogle Scholar
  11. 11.
    Chow SK, Chan JY, Fung KP: Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells. J Cell Biochem 93(1): 173–187, 2004CrossRefPubMedGoogle Scholar
  12. 12.
    Wang ZG, Rivi R, Delva L, Konig A, Scheinberg DA, Gambacorti-Passerini C, Gabrilove JL, Warrell RP, Pandolfi PP: Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemic cell lines and function in a PML and PML-RAR alpha independent fashion. Blood 92: 1497–1504, 1999Google Scholar
  13. 13.
    Mirkes PE, Little SA: Teratogen-induced cell death in postimplantation mouse embryos: differential tissue sensitivity and hallmarks of apoptosis. Cell Death Differ 5: 592–600, 1999CrossRefGoogle Scholar
  14. 14.
    Chen YC, Lin Shiau SY, Lin JK: Involvement of reactive oxygen species and caspase3 activation in arsenite-induced apoptosis. J Cell Physiol 177: 324–333, 1998CrossRefPubMedGoogle Scholar
  15. 15.
    Choi YJ, Park JW, Suh SI, Mun KC, Bae JH, Song DK, Kim SP, Kwon TK: Arsenic trioxide-induced apoptosis in U937 cells involve generation of reactive oxygen species and inhibition of Akt. Int J Oncol 21: 603–610, 2002PubMedGoogle Scholar
  16. 16.
    Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P: Inhibition of mitochondrial respiration a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278(39): 37832–37839, 2003CrossRefPubMedGoogle Scholar
  17. 17.
    Thomas X, Dombret H, Cordonnier C, Pigneux A, Gardin C, Guerci A, Vekhoff A, Sadoun A, Stamatoullas A, Fegueux N, Maloisel F, Cahn JY, Reman O, Gratecos N, Berthou C, Huguet F, Kotoucek P, Travade P, Buzyn A, de Revel T, Vilque JP, Naccache P, Chomienne C, Degos L, Fenaux P: Treatment of relapsing acute promyelocytic leukemia by all-trans retinoic acid therapy followed by timed sequential chemotherapy and stem cell transplantation. Leukemia 14: 1006–1134, 2000CrossRefPubMedGoogle Scholar
  18. 18.
    Iwama K, Nakajo S, Aiuchi T, Nakaya K: Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+}–dependent production of superoxide. Int J Cancer 92(4): 518–526, 2001CrossRefGoogle Scholar
  19. 19.
    Doza YN, Hall-Jackson CA, Cohen P: Arsenite blocks growth factor induced activation of the MAP kinase cascade, upstream of Ras and downstream of GrB2-Sos. Oncogene 17: 19–24, 1998CrossRefPubMedGoogle Scholar
  20. 20.
    Quignon F, DeBels F, Koken M, Feunteun J, Ameisen JC, Dethe H: PML induces a novel caspase-independent death process. Nat Genet 20: 259–265, 1998CrossRefPubMedGoogle Scholar
  21. 21.
    Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed JC, Kroemer G: Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249: 413–421, 1999CrossRefPubMedGoogle Scholar
  22. 22.
    Sordet O, Rebe C, Leroy I, Bruey JM, Garrido C, Miguet C, Lizard G, Plenchette S, Corcos L, Solary E: Mitochondra-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood 97: 3931–3940, 2001CrossRefPubMedGoogle Scholar
  23. 23.
    Zoratti M, Szabo I: The mitochondrial permeability transition. Biochem Biophys Acta 1241: 139–176, 1995PubMedGoogle Scholar
  24. 24.
    Kroemer G: The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3: 614–620, 1997CrossRefPubMedGoogle Scholar
  25. 25.
    Huang X, Zhai D, Huang Y, Yang F: Mitochondrial Ca2+ transport and permeability transition pore opening and mitochondria energetic status. Mol Cell Biochem 224: 1–7, 2001CrossRefPubMedGoogle Scholar
  26. 26.
    Simpson PB, Russell JT: Role of mitochondrial Ca2+ regulation in neuronal and glial cell signaling. Brain Res Rev 26: 72–81, 1998CrossRefPubMedGoogle Scholar
  27. 27.
    Smaili SS, Hsu YI, Youle RJ, Russell JT: Mitochondria in Ca2+ signaling and apoptosis. J Bioenerg Biomembr 32: 35–46, 2000CrossRefPubMedGoogle Scholar
  28. 28.
    Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153, 1997CrossRefPubMedGoogle Scholar
  29. 29.
    Ichas F, Mazat JP: From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochem Biophys Acta 1366: 33–50, 1998PubMedGoogle Scholar
  30. 30.
    Huang X, Zhai D, Huang Y: Study on the relationship between calcium-induced calcium release from mitochondria and PTP opening. Mol Cell Biochem 213: 29–35, 2000CrossRefPubMedGoogle Scholar
  31. 31.
    Broekemeier KM, Klocek CK, Pferfer DR: Proton selective substate of mitochondrial permeability pore: regulation by the redox state of the electron transport chain. Biochemistry 37: 13059–13065, 1998CrossRefPubMedGoogle Scholar
  32. 32.
    Petronilli V, Szabo I, Zoratti M: The inner mitochondrial membrane contains ion conducting channels similar to those found in bacteria. FEBS Lett 259: 137–143, 1989CrossRefPubMedGoogle Scholar
  33. 33.
    Emaus RK, Grunwald R, Lemasters JJ: Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850(3): 436–448, 1986PubMedGoogle Scholar
  34. 34.
    Frei B, Winterhalter KH, Richter C: Mechanism of alloxan-induced calcium release from liver mitochondria. J Biol Chem 260: 7394–7401, 1985PubMedGoogle Scholar
  35. 35.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490, 1998PubMedGoogle Scholar
  36. 36.
    Lenartowicz E, Bernardi P, Azzone GF: Phenylarsine oxide induces the cyclosporine-A-sensitive membrane permeability transition in rat liver mitochondria. J Bioenerg Biomembr 23: 679–688, 1991CrossRefPubMedGoogle Scholar
  37. 37.
    Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M: Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267: 2934–2939, 1992Google Scholar
  38. 38.
    Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL: Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268: 13791–13798, 1993PubMedGoogle Scholar
  39. 39.
    Connern CP, Halestrap AP: Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 302: 321–324, 1994PubMedGoogle Scholar
  40. 40.
    Petronilli V, Costantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P: The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 269: 16638–16642, 1994PubMedGoogle Scholar
  41. 41.
    Costantini P, Chernyak BV, Petronilli V, Bernardi P: Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271: 6746–6751, 1996CrossRefPubMedGoogle Scholar
  42. 42.
    Babcock DF, Hille B: Mitochondrial oversight of cellular Ca2+ signaling. Curr Opin Neurobiol 8: 398–404, 1998CrossRefPubMedGoogle Scholar
  43. 43.
    Gunter TE, Gunter KK, Sheu SS, Gavin CE: Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267: C313–C319, 1994PubMedGoogle Scholar
  44. 44.
    Hoyt KR, Sharma TA, Reyndds I: Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondria depolarization in rat cultured forebrain neurons. Br J Pharmacol 122(5): 803–808, 1997CrossRefPubMedGoogle Scholar
  45. 45.
    Susin SA, Zamzami N, Kroemer G: L Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366(1–2): 151–165, 1998PubMedGoogle Scholar
  46. 46.
    Green DR., Reed JC: Mitochondria and apoptosis. Science 281: 1309–1312, 1998PubMedGoogle Scholar
  47. 47.
    Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B: The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochem Biophys Acta 1366(1–2): 177–196, 1998PubMedGoogle Scholar
  48. 48.
    Bernardi P: Mitochondrial transport of cations: Channels, exchangers and permeability transition. Physiol Rev 79: 1127–1155, 1999PubMedGoogle Scholar
  49. 49.
    Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL: Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579): 259–263, 2002CrossRefPubMedGoogle Scholar
  50. 50.
    Kowaltowski AJ, Vercesi AE, Castilho RF: Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition. Biochem Biophys Acta 1318: 395–402, 1997PubMedGoogle Scholar
  51. 51.
    Woodfield K, Ruck A, Brdiczka D, Halestrap AP: Direct demonstration of a specific interaction between cyclophilin-D and the ademine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336: 287–290, 1998PubMedGoogle Scholar
  52. 52.
    Evtodienko YV, Teplova VV, Azarashvily TS, Kudin A, Prusakova O, Virtanen I, Saris NEL: The Ca2+ threshhold for the mitochondrial permeability transition and the content of proteins related to Bcl-2 in rat liver and Zajdela hepatoma mitochondria. Mol Cell Biochem 194: 251–256, 1999CrossRefPubMedGoogle Scholar
  53. 53.
    Argaud L, Gateau-Roesch O, Chalabreysse L, Goemez L, Loufouat J, Thivolet-Bejui F, Robert D, Ovize M: Preconditioning delays – induced mitochondrial permeability transition. Cardiovasc Res 61(1): 115–122, 2004CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Xuemei Tian
    • 1
  • Xiaodong Ma
    • 2
  • Dongfang Qiao
    • 2
  • Ande Ma
    • 2
  • Fang Yan
    • 1
  • Xingxu Huang
    • 2
    • 3
  1. 1.Deparment of Histology and EmbryologySouthern Medical UniversityGuangzhouChina
  2. 2.Central LaboratorySouthern Medical UniversityGuangzhouChina
  3. 3.Deparment of Histology and Embryology, Central LaboratorySouthern Medical UniversityGuangzhouChina

Personalised recommendations