An Algorithm for Asymptotic Mean and Variance for Markov Renewal Process of M/G/1 Type with Finite Level


The Markov renewal process (MRP) of M/G/1 type has been used for modeling many complex queueing systems with correlated arrivals and the special types of transitions of the MRP process corresponds to the departures from the queueing system. It can be seen from the central limit theorem for regenerative process that the distribution of the number of transitions of MRP is asymptotically normal. Thus, the asymptotic mean and variance of the number of transitions of MRP can be used to estimate the number of departures in the queueing system modelled by MRP.

The aim of this paper is to present an algorithm for computing the asymptotic mean and variance for the number of level-down-transitions in a Markov renewal process of M/G/1 type with finite level. The results are applied to the queueing system with finite buffer and correlated arrivals.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2


  1. Al Hanbali A, Mandjes A, Nazarathy Y, Whitt W (2011) The asymptotic variance of departures in critically loaded queues. Adv Appl Probab 43 (1):243–263

    MathSciNet  Article  Google Scholar 

  2. Angius A, Horváth A, Colledani M (2014) Moments of accumulated reward and completion time in Markovian models with application to unreliable manufacturing systems. Perform Eval 75-76:69–88

    Article  Google Scholar 

  3. Artalejo JR, Gómez-Corral A, He QM (2010) Markovian arrivals in stochastic modelling: a survey and some new results. Sort 34(2):101–144

    MathSciNet  MATH  Google Scholar 

  4. Asmussen S, Bladt M (1994) Poisson’s equation for queues driven by a Markovian marked point process. Queueing Syst 17:235–274

    MathSciNet  Article  Google Scholar 

  5. Dallery Y, Gershwin B (1992) Manufacturing flow line systems: a review of models and analytical results. Queueing Syst 12:3–94

    Article  Google Scholar 

  6. Ferng HW, Chang JF (2001) Departure processes of BMAP/G/1 queues. Queueing Syst 39:109–135

    MathSciNet  Article  Google Scholar 

  7. Gaver DJ (1962) A waiting line with interrupted service, including priorities. J R Stat Soc Ser B24:73–90

    MathSciNet  MATH  Google Scholar 

  8. Heindl A, Telek M (2002) Output models of MAP/PH/1(/K) queues for an efficient network decomposition. Perform Eval 49:321–339

    Article  Google Scholar 

  9. Horváth G, van Houdt B (2013) Departure process analysis of the multi-type MMAP[K]/PH[K]/1 FCFS queue. Perform Eval 70:423–439

    Article  Google Scholar 

  10. Lagershausena S, Tan B (2015) On the exact inter-departure and inter-start time distribution of closed queueing networks subject to blocking. IIE Trans 47:673–692

    Article  Google Scholar 

  11. Lee YH, Luh H (2006) Characterizing out processes of Em/Ek/1 queues. Math Comput Model 44:771–789

    Article  Google Scholar 

  12. Li J, Blumenfeld DE, Huang N, Alden JM (2009) Throughput analysis of production systems: recent advances and future topics. Int J Prod Res 47 (14):3823–3851

    Article  Google Scholar 

  13. Liu Y, Wang P, Zhao YQ (2018) The variance constant for continuous-time level dependent quasi-birth-and-death processes. Stoch Model 34(1):25–44

    MathSciNet  Article  Google Scholar 

  14. Lucantoni DM (1991) New results on the single server queue with a batch Markovian arrival process. Stoch Model 7:1–46

    MathSciNet  Article  Google Scholar 

  15. Lucantoni DM, Meier-Hellstern KS, Neuts MF (1990) A single server queue with server vacations and a class of non-renewal arrival processes. Adv Appl Probab 22:676–705

    MathSciNet  Article  Google Scholar 

  16. Lucantoni DM, Neuts MF (1994) Some steady-state distributions for the MAP/SM/1 queue. Stoch Model 10(3):575–598

    MathSciNet  Article  Google Scholar 

  17. Narayana S, Neuts MF (1992) The first two moment matrices of the counts for the Markovian arrival process. Stoch Model 8(3):459–477

    MathSciNet  Article  Google Scholar 

  18. Nazarathy Y, Weiss G (2008) The asymptotic variance rate of the output process of finite capacity birth-death queues. Queueing Syst 59(2):135–156

    MathSciNet  Article  Google Scholar 

  19. Neuts MF (1981) Matrix-geometric solutions in stochastic models, an algorithmic approach. Dover Publications, New York

    Google Scholar 

  20. Neuts MF (1989) Structured stochastic matrices of M/G/1 type and their applications. Marcel Dekker, New York

    Google Scholar 

  21. Shin YW (2019) Asymptotic mean and variance of departures in an M/G/1/K + 1 queue. Oper Res Lett 47:244–249

    MathSciNet  Article  Google Scholar 

  22. Tan B (2000) Asymptotic variance rate of the output in production lines with finite buffers. Ann Oper Res 93:385–403

    MathSciNet  Article  Google Scholar 

  23. Tan B (2013) Modeling and analysis of output variability in discrete material flow production systems. In: Tan B, Smith JM (eds) Handbook of Stochastic Models and Analysis of Manufacturing System Operations. Springer, New York, pp 287–311

  24. Telek M, Pfening A (1996) Performance analysis of Markov reward models. Perform Eval 27-28:1–18

    Article  Google Scholar 

  25. Wolff RW (1989) Stochastic modeling and the theory of queues. Prentice Hall, Inc, Englewood Cliffs, NJ

    Google Scholar 

Download references


This research was supported by Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Numbers NRF-2018R1D1A1A09083352).

Author information



Corresponding author

Correspondence to Yang Woo Shin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Uniformization Method for Computing A n, \(A^{\prime }_{n}\) and \(A^{\prime \prime }_{n}\)

Appendix: Uniformization Method for Computing A n, \(A^{\prime }_{n}\) and \(A^{\prime \prime }_{n}\)

Let \(\theta =\max \limits _{1\le j\le m}\left \{ [-D_{0}]_{jj}\right \}\) and

$$P_{0}=I+\frac{1}{\theta}D_{0}, P_{1}=\frac{1}{\theta}D_{1},$$

and for n = 0, 1, 2,⋯, k = 0, 1, 2,

$$\gamma_{n,k}={\int}_{0}^{\infty} e^{-\theta x}\frac{\theta^{n}}{n!}x^{n+k} d \hat{H}(x).$$

By repeating the uniflormization arguments (Lucantoni 1991) shows that An, n = 0, 1, 2,⋯ are given by

$$A_{n}=\sum\limits_{j=0}^{\infty} \gamma_{n,0} K^{(j)}_{n} =\sum\limits_{j=n}^{\infty} \gamma_{n,0} K^{(j)}_{n},$$

where the matrices \(K^{(j)}_{n}\) are defined recursively as follows:

  • \(K^{(0)}_{0}=I\), \(K^{(0)}_{n}=0\), n ≥ 1,

  • For j = 1, 2,⋯,

    $$ \begin{array}{@{}rcl@{}} K^{(j)}_{0}&=&K^{(j-1)}_{0}P_{0},\\ K^{(j)}_{n}&=&\left\{\begin{array}{ll} K^{(j-1)}_{n}P_{0}+K^{(j-1)}_{n-1}P_{1}, &1\le n\le j,\\ 0, & n\ge j+1. \end{array}\right. \end{array} $$

The matrices \(A^{\prime }_{n}\) and \(A^{\prime \prime }_{n}\) are obtained similarly by using γn,1 and γn,2 instead of γn,0 in the formula An, respectively.

We present the formulae of γn,k for some distributions.

  1. (i)

    Deterministic distribution of service time with mean h1:

    $$ \gamma_{n,k}=e^{-\theta h_{1}}\frac{\theta^{n}}{n!}h_{1}^{n+k}, n=0,1,2,\cdots, k=0,1,2. $$
  2. (ii)

    Gamma distribution Gam(a,b) of service time with mean h1 and SCV \({c_{s}^{2}}\): The parameters a and b are determined by

    $$a=\frac{1}{{c_{s}^{2}}}, b={c_{s}^{2}} h_{1}$$

    and the LST of Gam(a,b) is H(s) = (1 + bs)a. Let \(\gamma _{k}(z)={\sum }_{n=0}^{\infty } \gamma _{n,k} z^{n}\), k = 0, 1, 2 and c(0) = 1, c(1) = a, c(2) = a(a + 1). Simple algebra yields

    $$ \begin{array}{@{}rcl@{}} \gamma_{k}(z)&=&\frac{{\Gamma}(a+k)}{{\Gamma}(a)}\beta^{k}{\int}_{0}^{\infty} e^{-\theta(1-z)x}\frac{1}{{\Gamma}(a+k)}\frac{1}{b}e^{-x/b}\left( \frac{x}{b}\right)^{a+k-1} dx\\ &=&c(k)b^{k}\left( 1+b \theta(1-z)\right)^{-(a+k)}\\ &=&c(k)\frac{b^{k}}{(1+b\theta)^{a+k}} \left( 1-\frac{b\theta}{1+b\theta}z\right)^{-(a+k)}. \end{array} $$

Expanding the generating function γk(z), we have that

$$\gamma_{k}(z)=c(k)\frac{b^{k}}{(1+b\theta)^{a+k}}\sum\limits_{n=0}^{\infty} \left( \begin{array}{c} a+n+k-1\\ n \end{array}\right) \left( \frac{b\theta}{1+b\theta}\right)^{n}z^{n},$$


$$\left( \begin{array}{c} a+n+k-1\\ n \end{array}\right)=\frac{(a+k)(a+k+1){\cdots} (a+k+n-1)}{n!}.$$

Thus for n = 0, 1, 2,⋯, k = 0, 1, 2,

$$\gamma_{n,k}=\frac{1}{n!}\left( \prod\limits_{i=0}^{n+k-1} (a+i)\right) \theta^{-(a+k)}b^{-a} \left( \frac{b\theta}{1+b \theta}\right)^{a+n+k}. $$

As a special case, the exponential distribution with mean h1 is Gam(1,h1) and hence the γn,k for exponential distribution of service time is

$$\gamma_{n,k}=c(k) \theta^{-(k+1)}\frac{1}{h_{1}} \left( \frac{h_{1}\theta}{1+h_{1} \theta}\right)^{n+k+1}$$

with c(0) = c(1) = 1 and c(2) = 2.

(iv) PH(β,S) distribution of service time : The LST of PH(β,S) is

$$H(\theta)={\pmb\beta}(\theta I-{\pmb S})^{-1}{\pmb S}^{0},$$

where S0 = −Se. Note that

$$ \begin{array}{@{}rcl@{}} {\int}_{0}^{\infty} x^{n} e^{-\theta x} d\hat{H}(x)&=&(-1)^{n}H^{(n)}(\theta)\\ &=&n! {\pmb\beta}(\theta I-{\pmb S})^{-(n+1)}{\pmb S}^{0}. \end{array} $$

Thus for n = 0, 1, 2,⋯, k = 0, 1, 2,

$$ \begin{array}{@{}rcl@{}} \gamma_{n,k}&=&\frac{\theta^{n}}{n!}{\pmb\beta}{\int}_{0}^{\infty} x^{n+k} e^{-\theta x}e^{{\pmb S}x} dx {\pmb S}^{0}\\ &=&\frac{\theta^{n}}{n!}(n+k)! {\pmb\beta}(\theta I-{\pmb S})^{-(n+k+1)}{\pmb S}^{0}\\ &=&\frac{(n+k)!}{n!}\theta^{-(k+1)}{\pmb\beta}\left( I-\frac{1}{\theta}{\pmb S}\right)^{-(n+k+1)}{\pmb S}^{0}. \end{array} $$

(v) The γn,k for lognormal distribution LN(a,b) and Weibul distribution WB(a,b) of service time is obtained by numerical integration. The probability density function of LN(a,b) is

$$f(x)= \frac{1}{\sqrt{2\pi b}x}\exp\left[-\frac{(\log x -a)^{2}}{2b}\right], x> 0,$$

and the parameters a and b are determined by h1 and \({c_{s}^{2}}\) as follows

$$b=\log\left( 1+{c_{s}^{2}}\right), a=\log h_{1} -\frac{1}{2}b.$$

The probability density function of WB(a,b) is

$$f(x)= \frac{a}{b}\left( \frac{x}{b}\right)^{a-1} e^{-(x/b)^{a}}, x> 0,$$

and the parameters a and b are determined by h1 and \({c_{s}^{2}}\) as follows

$${c_{s}^{2}}=2a \frac{{\Gamma}(2/a)}{{\Gamma}(1/a)^{2}}-1, b=\frac{a h_{1}}{{\Gamma}(1/a)}.$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.W. An Algorithm for Asymptotic Mean and Variance for Markov Renewal Process of M/G/1 Type with Finite Level. Methodol Comput Appl Probab (2021).

Download citation


  • First return time
  • Fundamental period
  • Asymptotic mean
  • Asymptotic variance
  • Markov renewal process of M/G/1 type

Mathematics Subject Classification (2010)

  • 60K20
  • 60K25