Skip to main content
Log in

Analysis of a Three-Species Stochastic Delay Predator-Prey System with Imprecise Parameters

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper, a stochastic delay three-species food chain model with imprecise biological parameters has been developed. For this model, the sharp sufficient conditions for the existence of a unique ergodic stationary distribution and the extinction are established. We also discuss the effects of imprecise parameters on the persistence, extinction and existence of the stationary distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbalat I (1959) Systems d’equations differentielles d’osci d’oscillations nonlineaires. Rev Roum Math Pures Appl 42:67–70

    Google Scholar 

  • Beddington JR, May RM (1977) Harvesting natural populations in a randomly fluctuating environment. Science 197:463–465

    Article  Google Scholar 

  • Braumann CA (2007) Itô versus Stratonovich calculus in random population growth. Math Biosci 206:81–107

    Article  MathSciNet  MATH  Google Scholar 

  • Evans SN, Ralph P, Schreiber SJ, Sen A (2013) Stochastic population growth in spatially heterogeneous environments. J Math Biol 66:423–476

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman HI, Ruan SG (1995) Uniform persistence in functional differential equations. J Diff Equa 115:173–192

    Article  MathSciNet  MATH  Google Scholar 

  • He X, Liu M (2017) Dynamics of a stochastic delay competition model with imprecise parameters. J Nonlinear Sci Appl 10:4776–4788

    Article  MathSciNet  Google Scholar 

  • Hung LC (2009) Stochastic delay population systems. Appl Anal 88:1303–1320

    Article  MathSciNet  MATH  Google Scholar 

  • Ikeda N, Watanabe S (1977) A comparison theorem for solutions of stochastic dfferential equations and its applications. Osaka J Math 14:619–633

    MathSciNet  MATH  Google Scholar 

  • Jiang D, Shi N (2005) A note on non-autonomous logistic equation with random perturbation. J Math Anal Appl 303:164–172

    Article  MathSciNet  MATH  Google Scholar 

  • Li MY, Shuai Z (2010) Global-stability problem for coupled systems of differential equations on networks. J Diff Equ 248:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Du C, Deng M (2018) Persistence and extinction of a modified Leslie-Gower Holling-type II stochastic predator-prey model withimpulsive toxicant input in polluted environments. Nonlinear Anal Hybrid Syst 27:177–190

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Bai C (2016) Analysis of a stochastic tri-trophic food-chain model with harvesting. J Math Biol 73:597–625

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Fan M (2017) Stability in distributionof a three-species stochastic cascade predator-prey system with time delays. IMA J Appl Math 82:396–423

    MathSciNet  MATH  Google Scholar 

  • Liu M, He X, Yu J (2018) Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays. Nonlinear Anal Hybrid Syst 28:87–104

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Wang K, Wu Q (2011) Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull Math Biol 73:1969–2012

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Zhu Y (2018) Stability of a budworm growth model with random perturbations. Appl Math Lett 79:13–19

    Article  MathSciNet  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Philadelphia

    MATH  Google Scholar 

  • Mao X (2008) Stochastic differential equations and applications, 2nd edn. Woodhead Publishing, Sawston

    Book  Google Scholar 

  • Mao X (2011) Stationary distribution of stochastic population systems. Syst Control Lett 60:398–405

    Article  MathSciNet  MATH  Google Scholar 

  • May RM (1975) Stability and complexity in model ecosystems. Princeton Univ Press, Princeton

    Google Scholar 

  • Paine RT (1988) Food webs: road maps of interactions or grist for theoretical development?. Ecology 69:1648–1654

    Article  Google Scholar 

  • Pal D, Mahapatra GS (2016) Dynamic behavior of a predator-prey system of combined harvesting with interval-valued rate parameters. Nonlinear Dyn 83:2113–2123

    Article  MathSciNet  MATH  Google Scholar 

  • Pal D, Mahaptra GS, Samanta GP (2013) Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math Biosci 241:181–187

    Article  MathSciNet  MATH  Google Scholar 

  • Pal D, Mahaptra GS, Samanta GP (2016) Stability and bionomic analysis of fuzzy prey-predator harvesting model in presence of toxicity: a dynamic approach. Bull Math Biol 78:1493–1519

    Article  MathSciNet  MATH  Google Scholar 

  • Pal N, Samanta S, Biswas S, Alquran M, Al-Khaled K, Chattopadhyay J (2015) Stability and bifurcation analysis of a three-species food chain model with delay. Int J Bifurcation Chaos 25:1550123

    Article  MathSciNet  MATH  Google Scholar 

  • Peixoto M, Barros L, Bassanezi RC (2008) Predator-prey fuzzy model. Ecol Model 214:39–44

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, New York

    Book  Google Scholar 

  • Prato D, Zabczyk J (1996) Ergodicity for infinite dimensional systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ruan S (2006) Delay differential equations in single species dynamics. In: Arino O et al (eds) Delay differential equations and applications. Springer, New York, pp 477–517

  • Rudnicki R, Pichór K (2007) Influence of stochastic perturbation on prey-predator systems. Math Biosci 206:108–119

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma S, Samanta GP (2014) Optimal harvesting of a two species competition model with imprecise biological parameters. Nonlinear Dyn 77:1101–1119

    Article  MathSciNet  MATH  Google Scholar 

  • Shu H, Hu X, Wang L, Watmough J (2015) Delay induced stability switch, multitype bistability and chaos in an intraguild predation model. J Math Biol 71:1269–1298

    Article  MathSciNet  MATH  Google Scholar 

  • Song ZG, Zhen B, Xu J (2014) Species coexistence and chaotic behavior induced by multiple delays in a food chain system. Ecol Complex 19:9–17

    Article  Google Scholar 

  • Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem Acad Lincei Roma 2:31–113

    MATH  Google Scholar 

  • Zhao Y, Yuan S, Zhang Q (2015) Numerical solution of a fuzzy stochastic single-species age-structure model in a polluted environment. Appl Math Comput 260:385–396

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the National Natural Science Foundation of P.R. China (Nos. 11401302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J. Analysis of a Three-Species Stochastic Delay Predator-Prey System with Imprecise Parameters. Methodol Comput Appl Probab 21, 43–67 (2019). https://doi.org/10.1007/s11009-018-9640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-018-9640-5

Keywords

Mathematics Subject Classification (2010)

Navigation