Purely Excessive Functions and Hitting Times of Continuous-Time Branching Processes

  • F. Avram
  • P. Patie
  • J. Wang


The aim of this note is to provide an original proof and derive fine properties of the excessive function that characterizes the Laplace transform of the downward first hitting time to a fixed level of a non-degenerate continuous-time branching process. It hinges on a recent result by Choi and Patie (2016) on the potential theory of skip-free Markov chains and reveals, in particular, that the fundamental excessive function that characterizes the first hitting time is a purely excessive function.


Branching processes First passage time Purely excessive function 

Mathematics Subject Classification 2010

60J80 60J45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Athreya KB, Ney PE (1972) Branching processes. Springer, New YorkCrossRefMATHGoogle Scholar
  2. Choi M, Patie P (2016) Skip-free Markov chains. Submitted available at
  3. Cope DK, Tuckwell HC (1979) Firing rates of neurons with random excitation and inhibition. J Theoret Biol 80(1):1–14MathSciNetCrossRefGoogle Scholar
  4. Duhalde X, Foucart C, Ma C (2014) On the hitting times of continuous-state branching processes with immigration. Stochastic Process Appl 124(12):4182–4201MathSciNetCrossRefMATHGoogle Scholar
  5. Huillet T (2016) On Mittag-Leffler distributions and related stochastic processes. J Comput Appl Math 296:181–211MathSciNetCrossRefMATHGoogle Scholar
  6. Karlin S, Tavarè S (1982) Linear birth and death processes with killing. J Appl Probab 19(3):477–487MathSciNetCrossRefMATHGoogle Scholar
  7. Malice M-P, Lefèvre C (1983) On the general epidemic model in discrete time, Mathematics in biology and medicine (Bari, 1983), Lecture Notes in Biomath, vol 57. Springer, Berlin, p 1985Google Scholar
  8. Picard P, Lefèvre C (1998) The moments of ruin time in the classical risk model with discrete claim size distribution. Insurance Math Econom 23(2):157–172MathSciNetCrossRefMATHGoogle Scholar
  9. Redner S (2001) A guide to first-passage processes. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  10. Rogers LCG, Williams D (2000) Diffusions, Markov processes, and martingales, vol 1. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  11. Van Weverberg C (2015) Contributions to the study affine processes with applications in insurance. PhD thesis, Université Libre de BruxellesGoogle Scholar
  12. Sagitov S (2017) Tail generating functions for extendable branching processes. Stochastic Process Appl 127(5):1649–1675MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et leurs applications, UMR CNRS 5142Université de Pau et des Pays de l’AdourPauFrance
  2. 2.School of Operations Research and Information EngineeringCornell UniversityIthacaUSA

Personalised recommendations